Loading...
Search for: electrochemical-impedance-spectroscopy
0.006 seconds
Total 177 records

    PH responsive Ce(III) loaded polyaniline nanofibers for self-healing corrosion protection of AA2024-T3

    , Article Progress in Organic Coatings ; Volume 99 , 2016 , Pages 197-209 ; 03009440 (ISSN) Pirhady Tavandashti, N ; Ghorbani, M ; Shojaei, A ; Gonzalez Garcia, Y ; Terryn, H ; Mol, J. M. C ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Cerium nitrate loaded polyaniline (PANI) nanofibers were synthesized in this work via a chemical route. PANI nanofibers act as a host structure for the corrosion inhibitor, forming a Ce(III)-PANI complex. This complex is pH sensitive, and a change of pH can cause breaking of the complex and releasing of Ce(III). The Ce(III) loaded PANI nanofibers were embedded into epoxy ester coating and the self-healing corrosion protection ability was investigated by Scanning Vibrating Electrode Technique (SVET) and Electrochemical Impedance Spectroscopy (EIS). The results showed that by embedding of Ce(III) loaded PANI nanofibers into the coatings a superior corrosion protection and self-healing... 

    Development of a nanocellulose composite based voltammetric sensor for vitamin B9 analysis

    , Article Current Nanoscience ; Volume 12, Issue 4 , 2016 , Pages 493-499 ; 15734137 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    Bentham Science Publishers B.V 
    Abstract
    As a B group vitamins, vitamin B9 is a Water-soluble vitamin which is produced by plants and microorganisms (bacteria and yeasts). Vitamin B9 plays an important role in the production of proteins and nucleic acids in body and also is one of the substances that prevents the development of neural tube defects in the fetus. Methods: Electrochemical behavior of vitamin B9 was studied using a potentiostat/galvanostat SAMA 500, electroanalyzer system, I. R. Iran. A three-electrode system was used, including a glassy carbon working electrode (d = 2.0 mm, purchased from Azar Electrode Co., Urmia, I.R. Iran), an Ag/AgCl (saturated KCl) reference electrode and a Pt wire auxiliary electrode.... 

    The effect of heat treatment on properties of Ni–P–SiO2 nano-composite coating

    , Article Protection of Metals and Physical Chemistry of Surfaces ; Volume 52, Issue 3 , 2016 , Pages 492-499 ; 20702051 (ISSN) Sadreddini, S ; Afshar, A ; Sharif University of Technology
    Maik Nauka Publishing / Springer SBM 
    Abstract
    In this study, the surface morphology of Ni–P–SiO2 composite coating was investigated by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was examined by energy dispersive analysis of X-ray (EDX) and the Corrosion behavior of coating was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques, showing the corrosion resistance of Ni–P–SiO2 diminished after heat treatment. The results showed that in the coating with 12.5 g/L SiO2, the coating hardness enhanced from 453VH to 980 VH before and after heat treatment. Furthermore, the wear behavior of the coating was analyzed before and after heat treatment  

    Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    , Article Materials Science and Engineering C ; Volume 61 , 2016 , Pages 842-850 ; 09284931 (ISSN) Shahrokhian, S ; Naderi, L ; Ghalkhani, M ; Sharif University of Technology
    Abstract
    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    PH-responsive nanostructured polyaniline capsules for self-healing corrosion protection: the influence of capsule concentration

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3512-3520 ; 10263098 (ISSN) Tavandashti, N. P ; Ghorbani, M ; Shojaei, A ; Mol, J. M. C ; Terryn, H ; Gonzalez Garcia, Y ; Sharif University of Technology
    Abstract
    Nanostructured hollow polyaniline (PANI) capsules are good candidates for encapsulation of corrosion inhibitors and pH-responsive release when incorporated into organic coatings. In previous studies, the corrosion protection performance of PANI capsules, containing organic inhibitor 2-Mercaptobenzothiazole (MBT), was demonstrated. The present work studies the influence of capsule concentrations (i.e., 0.3, 1, and 2 wt%) on the corrosion protection properties of the coating system. Anti-corrosion properties of different coatings were compared by means of Electrochemical Impedance Spectroscopy (EIS) and Scanning Vibrating Electrode Technique (SVET). MBT loaded PANI capsules in epoxy ester... 

    Spray pyrolysis deposition of ZnFe2O4/Fe2O3 composite thin films on hierarchical 3-D nanospikes for efficient photoelectrochemical oxidation of water

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 34 , 2017 , Pages 18360-18368 ; 19327447 (ISSN) Hussain, S ; Hussain, S ; Waleed, A ; Tavakoli, M. M ; Yang, S ; Khawar Rauf, M ; Fan, Z ; Arif Nadeem, M ; Sharif University of Technology
    Abstract
    In this work, we study the role of nanotextured ZnFe2O4/Fe2O3composite thin films fabricated by ultrasonic spray pyrolysis (USP) on the photoelectrochemical water oxidation reactions. The ZnFe2O4/Fe2O3 composites with different molar ratios are deposited on three-dimensional nanospikes (NSP) substrate, and the results are compared with those for planar devices. It is observed that optical absorption and charge separation due to larger surface area is significantly enhanced in nanotextured photoactive ZnFe2O4/Fe2O3 films. After characterization of ZnFe2O4/Fe2O3 composite films with different molar ratios (ZF1, ZF2, and ZF3), we find that the nanotextured ZF1 composite with a molar ratio of... 

    One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high performance supercapacitor

    , Article International Journal of Hydrogen Energy ; Volume 42, Issue 33 , 2017 , Pages 21073-21085 ; 03603199 (ISSN) Asen, P ; Shahrokhian, S ; Iraji zad, A ; Sharif University of Technology
    Abstract
    A new ternary nanocomposite based on graphene oxide (GO), polypyrrole (PPy) and vanadium pentoxide (V2O5) is obtained via one-step electrochemical deposition process. Electrochemical deposition of V2O5, PPy and GO on a stainless steel (SS) substrate is conducted from an aqueous solution containing vanadyl acetate, pyrrole and GO to get V2O5/PPy/GO nanocomposite. Characterization of the electrode material is carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). The electrochemical performance of the as-prepared nanocomposite is evaluated by... 

    Simultaneous electrodeposition of reduced graphene oxide/ag nanoparticles as a sensitive layer for voltammetric determination of tinidazole

    , Article Nano ; Volume 12, Issue 6 , 2017 ; 17932920 (ISSN) Shahrokhian, S ; Navabi, M ; Mohammadi, R ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    A stable composite film of silver nanoparticles (Ag NPs) decorated on reduced graphene oxide is prepared by a two-step simple procedure. The surface morphology of the modified electrode is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The electrochemical behavior of tinidazole (TNZ) on the surface of the modified electrode is investigated by linear sweep voltammetry and electrochemical impedance spectroscopy. The prepared composite electrode acts as a highly sensitive platform for the voltammetric determination of TNZ, leading to a significant increase in the reduction peak current of TNZ. The effects of experimental parameters such as the... 

    Corrosion behavior and microhardness of Ni-P-SiO2-Al2O3 nano-composite coatings on magnesium alloy

    , Article Journal of Materials Engineering and Performance ; Volume 26, Issue 5 , 2017 , Pages 2032-2039 ; 10599495 (ISSN) Sadreddini, S ; Rahemi Ardakani, S ; Rassaee, H ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of... 

    Effects of Fe2O3 content on ionic conductivity of Li2O-TiO2-P2O5 glasses and glass-ceramics

    , Article Materials Chemistry and Physics ; Volume 190 , 2017 , Pages 8-16 ; 02540584 (ISSN) Mohaghegh, E ; Nemati, A ; Eftekhari Yekta, B ; Banijamali, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this study, Li2O-TiO2-P2O5-x(Fe2O3) (x = 0, 2.5, 5 and 7.5 weight part) glass and glass-ceramics were synthesized through conventional melt-quenching method and subsequently heat treatment. Glass samples were studied by UV–visible spectroscopy and crystallized samples were characterized by differential thermal analysis, X-ray diffractometry and field emission scanning electron microscopy. Besides, electrical properties were examined according to the electrochemical impedance spectroscopy techniques. Experimental optical spectra of the Fe2O3-doped glasses revealed strong UV absorption band in the range of 330–370 nm, which were attributed to the presence of Fe3+ ions. The major crystalline... 

    A high performance supercapacitor based on graphene/polypyrrole/Cu2O-Cu(OH)2 ternary nanocomposite coated on nickel foam

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 12 , 2017 , Pages 6508-6519 ; 19327447 (ISSN) Asen, P ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    A simple and low-cost electrochemical deposition method is used to prepare reduced graphene oxide/polypyrrole/Cu2O-Cu(OH)2 (RGO/PPy/Cu2O-Cu(OH)2) ternary nanocomposites as the electrode material for supercapacitor application. First, graphene oxide-polypyrrole (GO/PPy) nanocomposite is electrochemically synthesized on Ni foam by electro-oxidation of pyrrole monomer in an aqueous solution containing GO and Tiron. Subsequently, the GO/PPy film is converted to the corresponding reduced form (RGO/PPy) by an effective and eco-friendly electrochemical reduction method. Then, a thin layer of Cu2O-Cu(OH)2 is formed on RGO/PPy film by chronoamperometry. The RGO/PPy/Cu2O-Cu(OH)2 nanocomposite is... 

    Characterization of Ni-P-SiO2-Al2O3 nano-composite coatings on aluminum substrate

    , Article Materials Chemistry and Physics ; Volume 189 , 2017 , Pages 207-214 ; 02540584 (ISSN) Rahemi Ardakani, S ; Afshar, A ; Sadreddini, S ; Ghanbari, A. A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of... 

    Electrophoretic deposition of nano-zirconia coating on AZ91D magnesium alloy for bio-corrosion control purposes

    , Article Surface and Coatings Technology ; Volume 311 , 2017 , Pages 182-190 ; 02578972 (ISSN) Amiri, H ; Mohammadi, I ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Magnesium alloys are considered as potential biodegradable biomaterials in hard tissue implants. However, the fast degradation rate of these alloys in the biological environment causes failure of the implant just prior to the desirable time. In the present work, in order to decrease and curb the bio-corrosion rate of AZ91D Magnesium alloy, zirconia, which is classified as a biocompatible ceramic, was coated on the alloy surface through electrophoretic deposition (EPD) technique. The effects of alterations in the EPD parameters such as current density, duration time and ZrO2 particles concentration on coating properties including thickness, morphology and adhesion were then characterized.... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Impact of chromium doping on physical, optical, electronic and photovoltaic properties of nanoparticle TiO2 photoanodes in dye-sensitized solar cells

    , Article New Journal of Chemistry ; Volume 41, Issue 23 , 2017 , Pages 14516-14527 ; 11440546 (ISSN) Vafaei, M ; Mohammadi, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Herein, we report the impact of chromium doping on the physical properties, electronic band structure and photovoltaic characteristics of their corresponding devices based on dye-sensitized solar cells (DSCs). Different DSCs with various compositions of the photoanode electrodes are fabricated to study their optical, structural, conduction band edge, donor density, depth of trap states and photoelectrochemical properties using X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), field-emission scanning electron microscopy (FE-SEM), Mott-Schottky capacitance analysis, chemical capacitance and electrochemical impedance spectroscopy (EIS) measurements. For such studies, the Cr-doped... 

    Electric field enhanced synthesis of copper hydroxide nanostructures for supercapacitor application

    , Article Nano ; Volume 12, Issue 1 , 2017 ; 17932920 (ISSN) Sepahvand, S ; Ghasemi, S ; Sanaee, Z ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    Electric field enhanced approach has been used to synthesize different copper hydroxide morphologies as high-performance supercapacitors electrode materials. Employing this efficient, simple and low cost method, various shapes such as rod, flower and cube with an average grain size of 30nm to 1μm were obtained on the copper substrate. The results revealed that applied electric field considerably accelerates the formation time of nanostructures from several days to close to 1min, where some of the desired nanostructures were obtained even in 1s. The electrochemical properties of different morphologies were compared using cyclic voltammograms and charge/discharge tests and electrochemical... 

    Fabrication and characterization of graphene-based carbon hollow spheres for encapsulation of organic corrosion inhibitors

    , Article Chemical Engineering Journal ; Volume 352 , 2018 , Pages 909-922 ; 13858947 (ISSN) Haddadi, S. A ; Ramazani, S. A. A ; Mahdavian, M ; Taheri, P ; Mol, J. M. C ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this work, we synthesized carbon hollow spheres (CHSs) using the silica templating method, encapsulated 2-mercaptobenzimidazole (MBI) inhibitor in the CHSs and evaluated their corrosion inhibition performance upon exposure of mild steel to a saline solution containing the released inhibitor. The effects of silica template surface modification on the CHS structure was evaluated, while the structure and morphology of the synthesized CHS was analyzed using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), Raman spectroscopy and X-ray diffraction (XRD) spectroscopy. Furthermore, thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy... 

    Aupd bimetallic nanoparticle decorated TiO2 rutile nanorod arrays for enhanced photoelectrochemical water splitting

    , Article Journal of Applied Electrochemistry ; Volume 48, Issue 9 , 2018 , Pages 995-1007 ; 0021891X (ISSN) Siavash Moakhar, R ; Jalali, M ; Kushwaha, A ; Kia Liang Goh, G ; Riahi Noori, N ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    Abstract
    Abstract: Here, the synthesis of TiO2 rutile nanorod arrays (TiO2 NRs) decorated with bimetallic gold–palladium cocatalyst nanoparticles (AuPd NPs) is described. The modified photoelectrode was characterized by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, UV–vis spectroscopy, and electrochemical impedance spectroscopy (EIS). AuPd–TiO2 NRs (AuPd–TiO2) demonstrate high photocatalytic activity for photoelectrochemical (PEC) water splitting. The tailored structure of AuPd–TiO2 depicts a boosted photocurrent of 3.36 mA cm−2 under AM 1.5 illumination...