Loading...
Search for: electrode
0.014 seconds
Total 625 records

    , M.Sc. Thesis Sharif University of Technology Mahdavi Shakib, Akbar (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract

    This experimental work is of two parts. First, self-assembled monolayers of cysteamine was formed on the gold electrode surface which leaded to the formation of amine groups on the surface; then amine bond was formed between these amine groups and the carboxylic acid groups of acid treated multi-walled carbon nanotubes (MWCNTs). The modified electrode was used for voltammetric determination of dopamine in the presence of uric acid. In the second part, acid treated MWCNTs were decorated with ruthenium nanoparticles; then the resulting composite was used for surface modification with the exact same procedure as the first part. Ruthenium nanoparticles on the electrode surface were... 

    Constructing and Investigation of the Electrochemical Behavior of Nanocomposite of Conducting Polymers on Copper Hydroxide Nanotubes; Application to Determination of Glucose

    , M.Sc. Thesis Sharif University of Technology Manafi, Reza (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    A novel amperometric non-enzymatic glucose (NEG) sensor is designed by a facile preparation method. It is made by electrodeposition of Cu clusters and converting them to Cu(OH)2 nanotubes (Cu(OH)2NTs) arrays along with thin-film electro-polymerized of spindle-shaped polypyrrole (PPy@Cu(OH)2NTs), which have been doped by using sodium Benzene-1,3- disulfonate as an anion dopant. The electrochemical performance of the modified electrode toward glucose detection is investigated by various electrochemical methods. Under the optimized conditions, a significant electrochemical response improvement is observed toward the electro-oxidation of glucose on the surface of PPy@Cu(OH)2NTs electrode... 

    Comparison of the Performance of Nanostructured Metal Oxides and Metal Sulfides as Electrode Active Materials in the Construction of Supercapacitors

    , M.Sc. Thesis Sharif University of Technology Molaei Zarandi, Zeynab (Author) ; Ghotbi, Cyrus (Supervisor) ; Khorasheh, Farhad (Supervisor) ; Asgharinezhad, Ali Akbar (Supervisor) ; larimi, Afsaneh Sadat (Supervisor)
    Abstract
    High-capacity electrode materials are crucial for enhancing the performance of supercapacitors. Transition metal sulfides are considered promising materials for supercapacitor applications due to their high theoretical capacity and good electrical conductivity. Additionally, cerium oxide improves the performance of supercapacitors due to stable reversible oxidation states and greatly supported the faradaic redox reaction. In this study, ceria nanosheets incorporated with MCoS (M=Mn, Zn, Cu) were synthesized successfully through a facile hydrothermal method by sulfidation of MCo LDH/CeO2. The structural and morphological characteristics were analyzed using X-ray diffraction, scanning electron... 

    Optimized Pt Coating for High Charge Transfer- High Transparency Cathodes of Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Mashhoun, Sara (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Counter electrode of dye sensitized solar cell is prepared by deposition of a thin catalytic layer onto a conducting substrate and is responsible for reduction of iodide/triiodide redox electrolyte. Conventionally, counter electrode is made of platinum.
    Depending on the method of deposition, the thickness of Pt layer varies. The Pt layer may be so thick that it acts as reflector and returns the incident light back to the cell. In this case, large amount of Pt is used and a rise in cost is been made, but only the Pt particles in the interface of counter electrode/electrolyte take part in the reduction reaction.
    The aim of this project is optimization of making a counter electrode,... 

    Printable Carbon Electrode for Perovskite & Thin Film Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Mashhoun, Sara (Author) ; Taghavinia, Nima (Supervisor) ; Tajabadi, Fariba (Supervisor) ; Mohammadpour, Raheleh (Supervisor)
    Abstract
    Solar cells, as a part of photovoltaics (PV) industry, have a significant share in the renewable energy market. Perovskite solar cells (PSCs) and thin film solar cells (TFSCs) achieved 23% and 22% power conversion efficiencies (PCEs) respectively. However, the PV industry still faces challenges like “high manufacturing costs” and “stability”. Among the strategies to overcome these challenges are substitution of the costly materials with cheaper, more abundant ingredients along with utilizing inexpensive deposition methods like printing rather than vacuum-based methods such as evaporation and sputtering. Carbon materials attract more attention in the solar cell research community for their... 

    Design and Fabrication of Brain Spinal Cord Electrodes for Rehabilitation of Rats with Spinal Cord Injuries

    , M.Sc. Thesis Sharif University of Technology Mashayekhi, Fatemeh (Author) ; Fardmanesh, Mehdi (Supervisor) ; Shanehsazzadeh, Faezeh (Co-Supervisor)
    Abstract
    The use of microelectrode arrays in neural networks has offered a wonderful opportunity for evaluating numerous properties and interactions with excitable tissues such as the brain and spinal cord in the laboratory. In neural network applications, microelectrode arrays can be utilized to analyze nerve impulses or interact with neurons. They are either used to record neural data or to stimulate spinal cord nerves. Previous research has revealed that stimulating the spinal epidural region can help restore after spinal cord injuries (SCIs), which is the key to using them in the rehabilitation of living beings, including humans. According to the international campaign for the treatment of SCI... 

    A Low-power Low-noise Multi-Channel Biopotential Measurement IC with Motion Artifact Suppression Capability

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Ehsan (Author) ; Fotowat-Ahmadi, Ali (Supervisor)
    Abstract
    Long-term Multi-Channel Bio-Signal monitoring in a comfort way is demanding for emerging applications in everyday life. Typically, in multi-channel amplification, one amplifier per channel is employed. However, the bio-signal amplification requires lower bandwidth in comparison with the available speed of CMOS amplifiers. Therefore, it is sensible to develop a practical circuit trading the excess CMOS bandwidth with power consumption. The proposed circuit, which has three inputs, performs amplification through three stages; First, the inputs are applied to a 3 to 1 time-domain multiplexer. Second, a Current Feedback Instrumentation Amplifier (CFIA) is utilized. Finally, the amplified signal... 

    Replacement of Pt with Graphene Derivatives in Counter Electrode of Dye-Sensitized Solar Cells

    , M.Sc. Thesis Sharif University of Technology Mohammadnejad Hajlari, Sama (Author) ; Mohammadi, Mohammad Reza (Supervisor) ; Askari, Masoud (Supervisor)
    Abstract
    Dye-Sensitized solar cells are the third generation of solar cells that have the potential to increase efficiency as much as solar cells of previous generations, along with lower prices. The cathode electrode of the pigmented solar cell as one of the essential components of the cell plays the role of accelerating the oxidation reaction reduction of the electrolyte. Platinum often is used as a catalyst layer. To reduce production costs and maintain cell viability, platinum should replace with other materials at a lower cost and higher electrochemical activity. Recently, carbon materials have been considered for the production of inexpensive solar cells with suitable performance. Among... 

    Fabrication of Transparent Electrode by Metallic Nanofibers

    , M.Sc. Thesis Sharif University of Technology Mohammadbeigi, Nima (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Transparent conductive electrode (TCE) is one of the indispensable constituent of optoelectronic devices, which heretofore various materials such as ITO, graphene, CNT, metal nanowire and nanofiber network have been used to produce them. It should also be assumed that the use of low-cost materials, which has cost-effective production method, is essential for the construction of transparent electrodes. Copper nanofiber network film which is obtained from electrospinning process is a promising candidate among these materials because it has superiorities, such as low sheet resistance, proper flexibility and abundance in ground resources, scalable and cost-effective fabrication method. There are... 

    Construction of The Catalyst Layer of a PEM Fuel Cell Using Electrospray Method

    , M.Sc. Thesis Sharif University of Technology Ghorbani Nohooji, Sobhan (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    Due to Reduction of fossil fuels resources and the pollution caused by using them, it seems inevitable to shift to using reproducible energies. Among different resource of reproducible energy, fuel cell is one of suitable technologies for investigation and development. Fuel cell is an electrochemical system to convert chemical energy of fuel directly to electrical energy. Each fuel cell has seven part (two Bipolar Plate, two electrode, two catalyst layer and polymeric Membrane). Oxidation occur in anode of fuel cell and created electron enters external circuit and then riches the cathode. The positive ion created in the anode reaches the cathode through the membrane (electrolyte) and... 

    Fabrication and Investigation of Co3O4 Sponged Shape Nanostructured Supercapacitor Layer Electrodes Modified by Graphene

    , Ph.D. Dissertation Sharif University of Technology Qorbani, Mohammad (Author) ; Moshegh, Alireza (Supervisor) ; Naseri, Naima (Supervisor)
    Abstract
    Recently, Supercapacitors, as one of the most important energy storage devices, have attracted attensions by the scientists. Supercapcitor devices with appoporate design can store energy by two different mechanisms: i) physical (like conventional capacitors, i.e. by using polarization of the electrolyte, and ii) formation of electric double layer) and chemical mechanisms (like batteries, with reversible faradic reactions). These energy storage mechanisms allow these devices not only store high energy density but also they can provide high power density. In this project, two Co3O4/Co(OH)2 and Co3O4@Sponge-like rGO electrodes are made with chemical and electrochemical methods. To characterize... 

    Modifying Hole Transport in Branched hematite Nanostructures for Photoelectrochemical Water Splitting

    , M.Sc. Thesis Sharif University of Technology Farhoosh, Shima (Author) ; Naseri, Naimeh (Supervisor)
    Abstract
    Regarding increasing world population, air pollution and depletion of fossil fuels supplies, hydrogen production via photoelectrochemical water splitting is a promising approach for providing a clean and renewable source of energy. Hematite (α-Fe2O3), the most common natural form of iron oxide, with a suitable band gap, high stability, earth-abundant nature and low cost has been widely acknowledged as a photoanode. However, intrinsic drawbacks of hematite like low electrical conductivity, short hole diffusion length and high recombination rate of electron-hole pairs hinder its photoelectrochemical performance with high efficiency. In this research, hematite nanostructures were synthesized... 

    , M.Sc. Thesis Sharif University of Technology Oghbaei, Shabnam (Author) ; Ghabl, Feridon (Supervisor)
    Abstract
    The purpose of this study is to investigate the effect of halids on electrooxidation of silver in alkalie medium. For this case, electrochemical teqniques such as Chronoamperometery (CA) and Cyclic Voltammetry (CV) were applied. Characterization of the electrodeposition process is based on quantitative analysis of the potentiostatic current versus time curves. Rate constants of nucleation and growth obtained from the fit of the recorded transients to the generalized equations derived based on Abyaneh and Flischmann model. The conditions that justify the use of the limiting forms of the transient equations for the so-called “ instantaneous” and “ progressive” nucleation processes were... 

    Preparation and Investigation of Electrochemical Sensors for Determination of Pharmaceutical and Biological Compunds Based on Glassy Carbon Electrode Modified with Polypyrrole/Carbon Nanotube Composite

    , M.Sc. Thesis Sharif University of Technology Azimzadeh Sani, Mahnaz (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the recent years, conductive polymers are widely used in the design and construction of chemical and biological sensors.The polypyrrole due to features such as good thermal and chemical stability, ease of synthesis and better conductivity than other conductive polymers, atracts much attention. In order to modification of electrode surface,adhesiveand thin polymer films can be electropolymerized in the presence of organic or inorganic dopants on the surface of metal or carbon surfaces in aqueous or organic solutions. On the other hand carbon nanotubes by owing unique properties such as chemical stability and high electrical conductivity are good choice for electrod surface modification.... 

    Fabrication of Composite Electrode Materials Based on Bi-Metalic Metal-Organic Frameworks for Designation of Amperometric Non-Enzymatic Glucose Sensors

    , M.Sc. Thesis Sharif University of Technology Ataei Kachouei, Matin (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the present study, the method of direct growth was used to grew bi-metalic MOFs based on cobalt and zinc, as electroactive centers, for preparing electrochemical sensors for the determination of glucose. In comparison to most of the electrochemical sensing platforms based on MOFs for determining glucose, which suffer from some disadvantages like time-consuming synthesis procedures and using hazardous organic solvents, the proposed in-situ growth method is much faster and without any need to toxic organic solvents. Herein, cobalt and zinc-based MOFs were grown on the surface of glassy carbon electrode by the direct and rapid conversion of layered double hydroxide nanosheets intermediates.... 

    Effect of TiO2-based Nanocomposite Scattering Layer on Photovoltaic Characteristics of Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Asgari Moghaddam, Hatameh (Author) ; Seyyed Reihani, Morteza (Supervisor) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Many efforts have been put into increasing the efficiency of dye-sensitized solar cells that part of it has been devoted to structure and chemical composition of photoanode electrode. In this thesis, the effect of changes in the composition and its influence on light scattering ability in photoanode of dye sensitized solar cells was studied.First, the nanoparticles of titanium dioxide powder through solvothermal method as well as spherical particle and barium titanate powder by sol-gel method were synthesized. XRD and FE-SEM analyses indicated that synthesized powders are in good size and morphology regarding the intended chemical composition. Optical properties of TiO2 particles were... 

    Fabrication of Applied Electrode Materials based on Metal-Organic Frameworks to Design Non-Enzymatic Electrochemical Sensing Platforms for Measuring of Glucose in Physiological Samples

    , M.Sc. Thesis Sharif University of Technology Ezzati, Milad (Author) ; Shahrokhian Dehkordi, Saeed (Supervisor)
    Abstract
    In the first work, the method of direct growth was used to grew MOFs based on cobalt, as electroactive centers, for preparing electrochemical sensors for the determination of glucose. In comparison to most of the electrochemical sensing platforms based on MOFs for determining glucose, which suffer from some disadvantages like time-consuming synthesis procedures and using hazardous organic solvents, the proposed in situ growth method is much faster and no need to toxic organic solvents. Herein, cobalt-based MOFs were grown on the surface of the reduced graphene oxide modified glassy carbon electrode by the direct and rapid conversion of cobalt hydroxide nanosheets intermediates. The... 

    Electrochemical Deposition of Composite Coatings of Nickel - Silicon Carbide Under Pulsed Current Using a Rotating Disk Electrode

    , M.Sc. Thesis Sharif University of Technology Zarghami, Vahid (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Ni-SiC composite coatings are widely used in industry (equipment high wear resistance coatings, corrosion resistant coatings, ship and boiler coatings, . . . ). Its unique properties in high wear resistance, corrosion resistance and tribological properties, researchers tend to investigate this coating. This study covers Ni-SiC composite coating under pulsed current using a rotating disk electrode to achieve optimal conditions in synthsis process, increaseing hardness and resistance to corrosion in coatings.waats' bath established for electrodeposition in this research. Bath parameters, current parameters and hydrodynamic of solution is examined. Changing of current type from direct current... 

    Experimental Studies on Various Parametres in Wastewater Treatment by Electrochemical Method

    , M.Sc. Thesis Sharif University of Technology Safari, Sedigheh (Author) ; Roosta Azad, Reza (Supervisor) ; kariminia, Hamid Reza (Co-Advisor)
    Abstract
    Electrocoagulation is one of the new methods for water and wastewater treatment that is carried out by electrical current. This method is easily applicable to a variety of wastewater. it is highly efficient in organic matter removal and other toxic are and dangerous pollutants.
    This study dealt with diesel and COD removal by Electrocoagulation method. Energy consumption, electricity consumption, and the amount of sludge produced by this method was evaluated. Experiments were conducted in a 2 L reactor, consisting aluminum and iron electrodes.The distance between anode and cathode was 5 cm. To evaluate the efficiency of electrocoagulation method, parameters including: pH, time,... 

    Improving the Performance of the Electrostatic Precipitator Used in Cement Plant

    , M.Sc. Thesis Sharif University of Technology Sabah Kadhm Alkaabi, Dhiyaa (Author) ; Sadrhosseini, Hani (Supervisor) ; Pasharavesh, Abdolreza (Supervisor)
    Abstract
    Electrostatic precipitators are widely used in cement plants to remove impurities and dust from the exhaust gases. The filtration mechanism is based on using high intensity electric fields which first ionize the particles and then absorb them toward the collecting electrodes. The corrosion effect is one of the major problems associated with electrostatic precipitators which not only can negatively affect their operation efficiency but also decreases their life-time through breakage occurrence in the corroded electrodes. One of the commonly used methods to suppress this negative effect and increase the total working hours of the device is to cut the bottom part of the first collecting plate...