Loading...
Search for: electrolytes
0.006 seconds
Total 321 records

    Experimental Study and Modeling of Saturation Molality of Inorganic Salts in formation water

    , M.Sc. Thesis Sharif University of Technology Sahraei, Sadegh (Author) ; Taghikhani, Vahid (Supervisor) ; Ghotbi, Sirous (Supervisor) ; Yousefi, Leyla (Co-Advisor)
    Abstract
    Saturation molality for a number of single and mixed aqueous electrolyte solutions containing NaCl, Na2CO3, and K2SO4, was measured at atmospheric pressure over a wide range of temperature. In order to check the repeatability of the experimental data, the experiments were replicated three times and average of the results was considered as final saturation molality. Experimental data of saturation molality for single electrolyte solutions were correlated using the modified UNIFAC–Dortmund model to account for the shortrange interaction. Binary interaction parameters, between water molecules and ionic species were also reported. For the long-range interactions between the ionic species in... 

    Experimental study and modelling of saturation molality of NaCl in quaternary aqueous electrolyte solutions at various temperatures

    , Article Desalination ; Volume 267, Issue 2-3 , February , 2011 , Pages 228-232 ; 00119164 (ISSN) Yousefi, L ; Roayaei, E ; Taghikhani, V ; Safekordi, A ; Zahedzadeh, M ; Sharif University of Technology
    2011
    Abstract
    Saturation molality of sodium chloride in mixed aqueous electrolyte solutions containing NaCl, CaSO4 and Na2SO4 was measured at atmospheric pressure over the wide range of temperatures using an equilibrium cell equipped with an accurate temperature control system. The measurements were carried out at different CaSO4 and Na2SO4 concentrations. In order to check the repeatability of the experimental data for the saturation molality of NaCl, the experiments were replicated three times and the values reported were the average of the replicas. To model the data generated in this work, the PDH+UNIFAC-Dortmund activity coefficient model was used. The model used to predict the mean ionic activity... 

    On the growth sequence of highly ordered nanoporous anodic aluminium oxide

    , Article Materials and Design ; Volume 27, Issue 10 , 2006 , Pages 983-988 ; 02613069 (ISSN) Ghorbani, M ; Nasirpouri, F ; Iraji zad, A ; Saedi, A ; Sharif University of Technology
    Elsevier Ltd  2006
    Abstract
    Anodic aluminium oxide films were fabricated by well known two-step anodizing process in oxalic acid electrolyte. The ordering characteristics (ordered pore domains, average pore diameter size and through-pore arrangement) of anodic aluminium oxide films, obtained in different growth sequences, were identified by microscopic analysis such as ex situ contact-mode atomic force microcopy and scanning electron microscopy. Flattened areas in which some pits are seen mostly cover the electropolished surface of aluminium. Single anodizing of aluminium produces a broad distribution of nanopore size, whereas induces a highly ordered hemispherical pattern, which plays the ordered nucleation sites for... 

    Construction of New Polymer Electrolyte Based on PVDF-HFP, Plasticizer DMA AndSiO2nano-particles with High Ionic Conductivity for Lithium Batteries

    , M.Sc. Thesis Sharif University of Technology Didari, Sina (Author) ; Baghalha, Morteza (Supervisor) ; Khorasheh, Farhad (Supervisor)
    Abstract
    Polymer electrolytes are most frequently used electrolytes especially in lithium ion batteries. The gel-polymer and polymer-ceramic electrolytes were synthesized using DMA plasticizer, LiClO4, and SiO2 ceramic Nano fillers through coating method. EIS, FTIR, XRD, SEM, and TGA analyses were carried out on electrolytes. The optimum amount of perchlorate and polymer was obtained 0.5 M and 5% w/w, respectively. Also, the optimum amount of silica was obtained 2% w/w. the optimizations were carried out suing conductometry. The EIS analysis showed the ionic conductance of gel-polymer 1.8 mS.cm-1 while that of ceramic-polymer was obtained 2.8 mS.cm-1  

    Advanced gel polymer electrolyte for lithium-ion polymer batteries

    , Article ASME 2013 7th Int. Conf. on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology ; July , 2013 ; 9780791855515 (ISBN) Zhang, R ; Hashemi, N ; Ashuri, M ; Montazami, R ; Advanced Energy Systems Division, Solar Energy Division ; Sharif University of Technology
    2013
    Abstract
    We report improved performance of Li-ion polymer batteries through advanced gel polymer electrolytes (GPEs). Compared to solid and liquid electrolytes, GPEs are advantageous as they can be fabricated in different shapes and geometries; also ionic properties are significantly superior to that of solid and liquid electrolytes. We have synthetized GPE in form of membranes by trapping ethylene carbonate and propylene carbonate in a composite of polyvinylidene fluoride and N-methylpyrrolidinore. By applying phase-transfer method, we synthetized membranes with micro-pores, which led to higher ionic conductivity. The proposed membrane is to be modified further to have higher capacity, stronger... 

    Effect of electrolyte concentration on microstructure and properties of micro arc oxidized hydroxyapatite/titania nanostructured composite

    , Article Materials Science and Engineering C ; Volume 33, Issue 5 , 2013 , Pages 2555-2561 ; 09284931 (ISSN) Abbasi, S ; Golestani Fard, F ; Mirhosseini, S. M. M ; Ziaee, A ; Mehrjoo, M ; Sharif University of Technology
    2013
    Abstract
    Micro arc oxidation was employed to grow TiO2/hydroxyapatite composite layer on titanium substrate. The correlation between electrolyte concentration, diameter and density of the pores in fabricated layers was investigated. Therefore, the effect of electrolyte concentration on composition and morphology of grown layers was studied using SEM, EDX, XRD and XPS techniques. Samples were coated in electrolytes containing 5, 10 and 15 g/l calcium acetate and 1, 3 and 5 g/l β-glycerophosphate, at optimized voltage for 3 min. Pore size variations obey a similar pattern by the addition of both calcium acetate and β-glycerophosphatein various concentrations based on SEM observations. However,... 

    Al2O3-ZrO2 nanostructured coatings using DC plasma electrolytic oxidation to improve tribological properties of Al substrates

    , Article Applied Surface Science ; Volume 356 , November , 2015 , Pages 927-934 ; 01694332 (ISSN) Barati, N ; Meletis, E. I ; Golestani Fard, F ; Yerokhin, A ; Rastegari, S ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Alumina-zirconia nanostructured coatings were formed on 7075 Al alloy through Plasma Electrolytic Oxidation (PEO) operated in aDC potentiostatic mode. The composite coatings were produced in the range of 425-500 V in an alkaline electrolyte containing 4 g/LK2ZrF6. Tribological properties of coatings were investigated using dry sliding wear test against WC balls with a pin-on-disc tribometer. Wear rates were evaluated using optical profilometer. It was shown that the nanostructured alumina-zirconia composite coatings can be formed at voltages 450 V. The coating thickness and roughness were in the range of 15.2-24.2 μm and 0.68-2.35 μm, respectively. The distribution of Al, Zr and O in the... 

    Self-organized titanium oxide nanotubes prepared in phosphate electrolytes: Effect of voltage and fluorine concentration

    , Article ECS Transactions, 25 April 2010 through 30 April 2010 ; Volume 28, Issue 7 , April , 2010 , Pages 67-74 ; 19385862 (ISSN) ; 9781607681830 (ISBN) Mahshid, S ; Dolati, A ; Goodarzi, M ; Askari, M ; Ghahramaninezhad, A ; ECS All Divisions ; Sharif University of Technology
    2010
    Abstract
    TiO2 a nanotube array was prepared using an anodization process. The process proceeded in a two-electrode cell containing of platinum sheet as the cathode electrode. Two phosphate-base electrolyte solutions containing different amounts of HF and NH4F were prepared. Different concentration of fluorine ions were examined in respected electrolytes. Current transient techniques were used to produce the TiO2 nanotubes at constant voltage of 18-25V. It was revealed that anodization at 18-22V, in so-called electrolytes would end up to nano-tubular structure. However the tubular structure prepared at 20V and from phosphate electrolyte containing of 0.5 wt% NH4F as well as 0.5 wt% HF, was recognized... 

    A transient model of vanadium redox flow battery

    , Article Mechanics and Industry ; Volume 17, Issue 4 , 2016 ; 22577777 (ISSN) Ozgoli, H. A ; Elyasi, S ; Sharif University of Technology
    EDP Sciences  2016
    Abstract
    It has been attempted to gain a new viewpoint in transient cell modeling of vanadium redox flow battery. This has been achieved by considering electrochemical relations along with conceptual electrical circuit of this kind of battery. The redox flow battery is one of the best rechargeable batteries because of its capability to average loads and output power sources. A model of transient behavior is presented in this paper. The transient features are considered as the most remarkable characteristics of the battery. The chemical reactions, fluid flow, and electrical circuit of the structure govern the dynamics. The transient behavior of the redox flow battery based on chemical reactions is... 

    Modeling the size dependent pull-in instability of cantilever nano-switch immersed in ionic liquid electrolytes using strain gradient theory

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 976-989 ; 10263098 (ISSN) Kanani, A ; Koochi, A ; Farahani, M ; Rouhi, E ; Abadyan, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    It is well recognized that size-effect often plays a significant role in the mechanical performance of nano-structures. Herein, strain gradient continuum elasticity is employed to investigate the size dependent pull-in instability of the cantilever nanoactuators immersed in ionic liquid electrolyte. The presence of dispersion forces, i.e. Casimir and van der Waals field, is considered in the theoretical model as well as the double-layer electrochemical attraction. To solve the non-linear constitutive equation of the system, two approaches, i.e. the Rayleigh Ritz Method (RRM) and the numerical solution method, are employed. Impact of the size dependency and dispersion forces on the... 

    A novel lifetime prediction method for lithium-ion batteries in the case of stand-alone renewable energy systems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 103 , 2018 , Pages 115-126 ; 01420615 (ISSN) Astaneh, M ; Dufo López, R ; Roshandel, R ; Bernal Agustin, J. L ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper presents a mathematical formulation of lithium-ion batteries, including aging and temperature effects. The model is developed by integrating the simplified single particle model (SSPM) and reduced-order model (ROM) to predict solid electrolyte interphase growth (SEI). Results show agreement with the experimental data at 25 °C operating temperature and moderate cycling currents. A maximum error of 3.6% in finding the battery discharged Ah is observed in harsh operating conditions, including 60 °C and approaching the end of life of the battery. Due to the typical operating conditions of stand-alone renewable energy systems, more accurate estimations are expected. Finally, this... 

    Effect of an anodizing pre-treatment on AA 5052 alloy/polypropylene joining by friction stir spot welding

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 245 , 2019 , Pages 107-112 ; 09215107 (ISSN) Aliasghari, S ; Skeldon, P ; Zhou, X ; Hashimoto, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A study has been carried out of the effect of an anodizing pre-treatment in a sulphuric acid electrolyte on the strength of AA 5052 alloy/polypropylene joints prepared using friction stir spot welding. Lap-shear tests were used to determine the joint strength. Comparisons were made with joints pre-treated using sand blasting. The failed specimens were examined by scanning and transmission electron microscopy. Anodizing improved the strength of the joints by a factor of about 6 compared with sandblasting. For the anodizing pre-treated joints, melted polymer infiltrated deeply within the nanoporous anodic film, forming a strong polymer-film bond. Joint failure occurred by ductile tearing of... 

    Mesoscopic rheological modeling of drilling fluids: Effects of the electrolyte

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , 2020 Kariman Moghaddam, A ; Ramazani Saadatabadi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Drilling fluid is a complex fluid, including base fluid and other materials, carrying out the vital functions during drilling operation such as cutting transport and controlling formation pressure. In order to optimize performance of a drilling process, a reliable rheological model is required in the computation of fluid flow dynamics. Time-independent Generalized Newtonian formulation are the most common models for describing the rheological behavior of drilling fluids due to its simplicity and ease of use, in spite the fact that they are not able to predict the normal stresses and could not consider effects of active components on the rheological behavior of the drilling fluid and also... 

    Nonisothermal two-phase modeling of the effect of linear nonuniform catalyst layer on polymer electrolyte membrane fuel cell performance

    , Article Energy Science and Engineering ; Volume 8, Issue 10 , 2020 , Pages 3575-3587 Sabzpoushan, S ; Jafari Mosleh, H ; Kavian, S ; Saffari Pour, M ; Mohammadi, O ; Aghanajafi, C ; Ahmadi, M. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this research, it is investigated to numerically evaluate the performance of a polymer electrolyte membrane fuel cell (PEMFC). The performance is investigated through the nonuniformity gradient loading at the catalyst layer (CL) of the considered PEMFC. Computational fluid dynamics is used to simulate a 2D domain in which a steady-state laminar compressible flow in two-phase for the PEMFC has been considered. In this case, a particular nonuniform variation inside the CL along the channel is assumed. The nonuniform gradient is created using a nonisothermal domain to predict the flooding effects on the performance of the PEMFC. The computational domain is considered as the cathode of PEMFC,... 

    Cycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques

    , Article Ionics ; Volume 28, Issue 1 , 2022 , Pages 213-228 ; 09477047 (ISSN) Sharifi, H ; Mosallanejad, B ; Mohammadzad, M ; Hosseini Hosseinabad, S. M ; Ramakrishna, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this work, cycling-induced aging occurring in 18650-type LiFePO4/graphite full cells at different C-rates is studied extensively. The mechanism of performance degradation is investigated using a combination of electrochemical and microstructural analyses. Half-cell studies are carried out after dismantling the full cells, using fresh and cycled LiFePO4 cathode and graphite anode to independently study them. The results show that the capacity of LiFePO4 electrodes is significantly recovered. The rate of capacity fading in the discharge state considered as irreversible capacity in the graphite is higher than LiFePO4 half cells, indicating a greater degradation in the performance of this... 

    On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation

    , Article Applied Catalysis A: General ; Volume 389, Issue 1-2 , 2010 , Pages 60-67 ; 0926860X (ISSN) Bayati, M. R ; Moshfegh, A. Z ; Golestani Fard, F ; Sharif University of Technology
    2010
    Abstract
    Sulfur doped TiO2 layers containing nano/micro-sized pores were synthesized by micro-arc oxidation process. Effect of the applied voltage and the electrolyte composition on physical and chemical properties of the layers was investigated using SEM, AFM, XRD, XPS, and EDS techniques. A UV-vis spectrophotometer was also used to study optical properties of the layers. It was found that the doped layers were porous with a pore size of 40-170 nm. They consisted of anatase and rutile phases with varying fraction depending on the applied voltage and electrolyte concentration. Our XPS investigations revealed the existence of sulfur in the forms of S4+ and S6+ states which substituted Ti4+ in the... 

    Characterization of Ceramic Coating Synthesized on Magnesium Alloy Substrate by Plasma Electrolytic Oxidation Process

    , M.Sc. Thesis Sharif University of Technology Rafizadeh, Ehsan (Author) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    Plasma electrolytic oxidation (PEO) is currently recognized as an effective coating method on active metals such as magnesium. In this method, through occurrence of strong electric discharges on the surface of the anode accompanied by electrochemical and thermo-chemical reactions at plasma environment, a relatively thick ceramic coating with complex compounds grows on the metal surface which significantly improves its properties. Regarding the influence of PEO electrical parameters on the morphology and other properties of the coating, the objective of the present study is to prepare a quality ceramic coating on AZ31 magnesium alloy substrate via setting the process parameters, such as... 

    Nanostructural Coating of Al2O3 on NiTi Alloy Via Electrochemical Method for Improvement of Biomedical and Surface Properties

    , M.Sc. Thesis Sharif University of Technology Mahloujchi, Raziyeh (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    Nitinol alloy is important and increasingly used in medicine and industry due to its unique properties such as shape memory and superelasticity. Plasma Electrolytic Oxidation (PEO) is a relatively new method which in electrical discharge occurrence and formation of small plasma arcs on the anode surface and the electrochemical and thermochemical reactions in plasma environment prepare ceramic coating on the substrate. This method is taken into consideration because of its simplicity and effectiveness in the preparation of oxide ceramic coatings with porous structure on the surface of certain metals and alloys to improve their corrosion and wear properties. In this study, to improve the... 

    Formation of Plasma Electrolytic Oxidation Coating on Aa5052 And Az31 Alloys Joint with Friction Stir Welding

    , M.Sc. Thesis Sharif University of Technology Safari, Saeed (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Plasma Electrolytic oxidation has recently been known as a new technology in surface engineering. It is one of the low-cost techniques used for improving corrosion and wear resistance in Al-Mg alloys. The purpose of this study first is to attach aluminum and magnesium alloys safely and without any defects, and then finding the optimum coating condition in connection line to achieve most possible corrosion resistance. For this purpose, first of all optimization of Al-Mg alloys friction stir welding (FSW) condition is required. After required investigations, it was shown that the weld created between Aluminum and Magnesium sheets by the cylindrical pin moving in a rotational speed of 550... 

    Making Electrolyte Lithium Batteries Using Ionic Liquids and Organic Solvents

    , M.Sc. Thesis Sharif University of Technology Ranji, Hassan (Author) ; Gholami, Mohammad Reza (Supervisor)
    Abstract
    In this work, butyl methylimidazolium tetrafluoroborate and butyl methylimidazolium hexafluorophosphate are used as ionic liquid and lithium perchlorate and lithium hexafluorophosphate as lithium salt. Dimethyl carbonate and propylene carbonate are used as solvent to prepare diffrent kinds of organic - ionic liquids solvent for lithium ion batterries. In preliminary expriment it was distinguished that in the mixture of organic solvent lithium hexaflourophosphat has more conductivity in comparison with lithium perchlorate. There for,in this work, all organic-ionic liquid solvent electrolytes are considered based on lithium hexaflourophosphat salt. Different compositions of organic-ionic...