Loading...
Search for: electrolytes
0.014 seconds
Total 322 records

    Formation of Two-Step Plasma Electrolytic Oxidation Coating On Commercially Pure Titanium and Study its Properties

    , M.Sc. Thesis Sharif University of Technology Ahmadnia, Samira (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Improvement of biological properties by modifying the composition and morphology of the surface layer is one of the main goals of using plasma electrolytic oxidation (PEO) for coating titanium implants. The purpose of this research is formation of biocompatible coating containing calcium, phosphorus and silicon on titanium by two-step PEO method in DC, constant voltage mode. In addition to good corrosion properties of the resultant coatings in simulated body environment (SBF), Having good adhesion due to the use of electrolytes with useful elements for biological function in both step of coating process rather than acidic electrolytes which are incompatible with the body environment, this... 

    Formation of Plasma Electrolytic Oxidation Coating on Aa5052 And Az31 Alloys Joint with Friction Stir Welding

    , M.Sc. Thesis Sharif University of Technology Safari, Saeed (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Plasma Electrolytic oxidation has recently been known as a new technology in surface engineering. It is one of the low-cost techniques used for improving corrosion and wear resistance in Al-Mg alloys. The purpose of this study first is to attach aluminum and magnesium alloys safely and without any defects, and then finding the optimum coating condition in connection line to achieve most possible corrosion resistance. For this purpose, first of all optimization of Al-Mg alloys friction stir welding (FSW) condition is required. After required investigations, it was shown that the weld created between Aluminum and Magnesium sheets by the cylindrical pin moving in a rotational speed of 550... 

    Using Numerical Simulation in the Design and Analysis of Spiral PEM Fuel Cells

    , M.Sc. Thesis Sharif University of Technology Arian Nazar, Mohammad Sadegh (Author) ; Kazem Zadeh Hannani, Siamak (Supervisor) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Roshandel, Ramin (Co-Advisor)
    Abstract
    The gas flow field geometry influences the transport phenomena inside PEMFCs and hence affecting their overall performance. Radial force and secondary flows resulting from curvature of the spiral channels in PEMFCs can improve mass transport limits and so does to their overall performance. Studying the effects of curvature of spiral channels on fuel cell performance and comparing them with similar designs is the aim of this thesis. The geometries are generated using concentric Archimedes’ spirals and categorized as axial or radial depending on the direction of the vector perpendicular to their MEA . Each category has five geometries which are the result of branching the main channel into... 

    The Poisoning Effect of Sulfur-Containing Compounds on the Elelctro-Oxidation of Methanol and Ethanol on Ni and Cu Electrodes

    , M.Sc. Thesis Sharif University of Technology Valadbeigi, Younes (Author) ; Gobal, Fereydon (Supervisor)
    Abstract
    In this study a systematic effort was made to investigate the poisoning effect of sulfur-containing materials on the electro- oxidation of methanol and ethanol on Ni and Cu electrodes in alkaline solutions by the methods of cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Activation energy of methanol electro-oxidation in the absence of Na2S was obtained 30.7 kJ/mol by cyclic voltammetric at different temperatures, and its values increased by increase in Na2S concentrations to 97kJ/mol. Na2S adsorption isotherms corresponded with Langmuire isotherm, equilibrium constants of adsorption – desorption and adsorption enthalpy (ΔHads= -62kJ/mol) were calculated for... 

    Effect of Plasma Electrolytic Oxidation on Joining aa 5052-carbon Fiber Aluminium Alloy to Polyprolene in Silicate and Aluminium Electrolyte

    , M.Sc. Thesis Sharif University of Technology Qasemi, Hamid Reza (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    The purpose of this study is to increase the strength of metal and polymer compound combinations in the direction of this increase, the electrolytic plasma oxidation coating is applied and its effect will be checked to increase bond strength. Also, due to the failure in the polymeric side of the bonding, the effect of adding short fibers of carbon to polypropylene will be checked on the strength of the polymer and bond strength. The effect of current density at coating application, the presence or absence of short carbon fiber in the polymeric field and the formation of initial hole on aluminum alloy on bond strength was studied. For further analysis, the optical and electron microscopic... 

    Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells

    , Article RSC Advances ; Volume 6, Issue 57 , 2016 , Pages 51894-51899 ; 20462069 (ISSN) Eskandari, M ; Ghahary, R ; Shokri, M ; Ahmadi, V ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Copper sulfide deposited ZnO nanorods (ZnO NRs/CuS) have been applied as a new counter electrode material with high electrocatalytic activity towards polysulfide electrolyte, which results in the formation of a highly efficient counter electrode for QDSSCs. It was observed from the current density-voltage (J-V) characteristics that the short-circuit current density (Jsc), power conversion efficiency (PCE), and fill factor (FF) were enhanced from 7.63 mA cm-2 to 14.48 mA cm-2, 1.59% to 4.18%, and 0.29 to 0.38, respectively, when a bare CuS counter electrode was changed to a ZnO NRs/CuS counter electrode. Electrochemical impedance spectroscopy (EIS), Tafel polarization and cyclic voltammetry... 

    ZIF-8/PEDOT @ flexible carbon cloth electrode as highly efficient electrocatalyst for oxygen reduction reaction

    , Article International Journal of Hydrogen Energy ; 2019 ; 03603199 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Design and fabrication of highly efficient and low-cost oxygen reduction reaction (ORR) electrocatalysts is of paramount importance for practical applications. Herein, we proposed a cost-effective, metal-free catalyst based on ZIF-8 metal-organic framework nanoparticles/electro-polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film on the surface of flexible carbon cloth (CC) electrode (ZIF-8/PEDOT/CC) via a two-step procedure. For this purpose, worm-like PEDOT nanostructures were deposited on the surface of carbon fibers using a pulse electro-polymerization technique followed by facile growth of ZIF-8 polyhedra nanoparticles via a chemical bath deposition method. The ORR measurements in... 

    ZIF-8/PEDOT @ flexible carbon cloth electrode as highly efficient electrocatalyst for oxygen reduction reaction

    , Article International Journal of Hydrogen Energy ; 2019 ; 03603199 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Design and fabrication of highly efficient and low-cost oxygen reduction reaction (ORR) electrocatalysts is of paramount importance for practical applications. Herein, we proposed a cost-effective, metal-free catalyst based on ZIF-8 metal-organic framework nanoparticles/electro-polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film on the surface of flexible carbon cloth (CC) electrode (ZIF-8/PEDOT/CC) via a two-step procedure. For this purpose, worm-like PEDOT nanostructures were deposited on the surface of carbon fibers using a pulse electro-polymerization technique followed by facile growth of ZIF-8 polyhedra nanoparticles via a chemical bath deposition method. The ORR measurements in... 

    Water electrolyte transport through corrugated carbon nanopores [electronic resource]

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 90, Issue 1, July 2014, Article number 012304 Moghimi Kheirabadi . A ; Moosavi. A
    Abstract
    We investigate the effect of wall roughness on water electrolyte transport characteristics at different temperatures through carbon nanotubes by using nonequilibrium molecular dynamics simulations. Our results reveal that shearing stress and the nominal viscosity increase with ion concentration in corrugated carbon nanotubes (CNTs), in contrast to cases in smooth CNTs. Also, the temperature increase leads to the reduction of shearing stress and the nominal viscosity at moderate degrees of wall roughness. At high degrees of wall roughness, the temperature increase will enhance radial movements and increases resistance against fluid motion. As the fluid velocity increases, the particles do not... 

    Water electrolyte transport through corrugated carbon nanopores

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Vol. 90, issue. 1 , July , 2014 ; ISSN: 15393755 Moghimi Kheirabadi, A ; Moosavi, A ; Sharif University of Technology
    Abstract
    We investigate the effect of wall roughness on water electrolyte transport characteristics at different temperatures through carbon nanotubes by using nonequilibrium molecular dynamics simulations. Our results reveal that shearing stress and the nominal viscosity increase with ion concentration in corrugated carbon nanotubes (CNTs), in contrast to cases in smooth CNTs. Also, the temperature increase leads to the reduction of shearing stress and the nominal viscosity at moderate degrees of wall roughness. At high degrees of wall roughness, the temperature increase will enhance radial movements and increases resistance against fluid motion. As the fluid velocity increases, the particles do not... 

    Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 1098-1104 ; 09284931 (ISSN) Asadian, E ; Iraji Zad, A ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable... 

    Visible photoenhanced current-voltage characteristics of Au : TTT iO2 nanocomposite thin films as photoanodes

    , Article Journal of Physics D: Applied Physics ; Volume 43, Issue 10 , 2010 ; 00223727 (ISSN) Naseri, N ; Amiri, M ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    In this investigation, the effect of annealing temperature and concentration of gold nanoparticles on the photoelectrochemical properties of sol-gel deposited Au : TiO2 nanocomposite thin films is studied. Various gold concentrations have been added to the TiO2 thin films and their properties are compared. All the deposited samples are annealed at different temperatures. The optical density spectra of the films show the formation of gold nanoparticles in the films. The optical bandgap energy of the Au : TiO2 films decreases with increasing Au concentration. The crystalline structure of the nanocomposite films is studied by x-ray diffractometry indicating the formation of gold nanocrystals in... 

    Visible photodecomposition of methylene blue over micro arc oxidized WO3-loaded TiO2 nano-porous layers

    , Article Applied Catalysis A: General ; Volume 382, Issue 2 , Jan , 2010 , Pages 322-331 ; 0926860X (ISSN) Bayati, M. R ; Golestani Fard, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    WO3-TiO2 nano porous layers were synthesized by micro arc oxidation (MAO) process under different applied voltages in electrolytes containing sodium tungstate and phosphate salts with various concentrations. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDS) techniques were employed to study phase structure and chemical composition of the layers. According to our data analysis, the nano porous layers consisted of anatase, rutile, and tungsten oxide phases with a varying fraction depending on the voltage and electrolyte concentration. Moreover, it was found that WO3 not only dispersed in the TiO2 matrix, but also doped into the TiO2... 

    Use of response surface methodology for evaluation of effective parameters in codeposition of Cu-Sn alloys using non-cyanide electroplating solution

    , Article Transactions of the Institute of Metal Finishing ; Volume 90, Issue 1 , January , 2012 , Pages 38-43 ; 00202967 (ISSN) Asnavandi, M ; Ghorbani, M ; Sharif University of Technology
    2012
    Abstract
    A pyrophosphate based solution, as an acidic electrolyte, was developed for bronze electroplating. By using a statistical experimental design, response surface method, the effects of five factors [copper concentration (Cu), tin concentration (Sn), pyrophosphate concentration (P), current density j and pH] on the composition of the electroplated alloy as well as the process efficiency were evaluated. Statistical analysis indicated that all the parameters were significant and a second order polynomial model was successfully fitted to the data for both the alloy composition and the process efficiency. Based on the results obtained, a solution of Cu(II)8.04 g L -1, Sn(II)=26.36 g L -1, P=113.22... 

    Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing

    , Article Sensors and Actuators, B: Chemical ; Volume 266 , 2018 , Pages 160-169 ; 09254005 (ISSN) Shahrokhian, S ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Breast Cancer (BRCA) is the most common threat in women worldwide. Increasing death rate of diagnosed cases is the main leading cause of designing specific genosensors for BRCA − related cancer detection. In the present study, an ultrasensitive label − free electrochemical DNA (E − DNA) sensor based on conducting polymer/reduced graphene − oxide platform has been developed for the detection of BRCA1 gene. An electrochemical method was applied as a simple and controllable technique for the electrochemical reduction of graphene oxide and also, electro − polymerization of pyrrole − 3 − carboxylic acid monomer. The results of the present work show that the polymer − coated reduced graphene −... 

    Ultrafine Co nanoislands grafted on tailored interpenetrating N-doped carbon nanoleaves: An efficient bifunctional electrocatalyst for rechargeable Zn-air batteries

    , Article Chemical Engineering Journal ; Volume 431 , 2022 ; 13858947 (ISSN) Zhang, F ; Chen, L ; Yang, H ; Zhang, Y ; Peng, Y ; Luo, X ; Ahmad, A ; Ramzan, N ; Xu, Y ; Shi, Y ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Zeolitic imidazole frameworks (ZIFs) provide an exciting platform to design and fabricate non-precious-metal carbon-based catalysts for oxygen reduction/evolution reaction (ORR/OER). Herein, we elaborately design a facile enzyme-assisted synthetic strategy that enables to tailor the ZIFs precursors into structural stable decussation shape, which derived Co nanoislands grafted on decussate N-doped carbon nanoleaves (D-Co@NC) can well retain the interpenetrating nanostructure. Benefiting from the combined advantages of compositions and interpenetrating nanostructures, D-Co@NC possesses 5.2 times higher exposed electrochemical active area than the conventional dodecahedral one, thus endowing... 

    Two-dimensional model of melt flows and interface instability in aluminum reduction cells

    , Article Light Metals 2008, New Orleans, LA, 9 March 2008 through 13 March 2008 ; 2008 , Pages 443-448 ; 01470809 (ISSN); 9780873397100 (ISBN) Kadkhodabeigi, M ; Sharif University of Technology
    2008
    Abstract
    We derive a new non-linear two dimensional model for melt flows and interface instability in aluminum reduction cells. This model is based on non-linear de St. Venant shallow water equations and contains the main features of an aluminum reduction cell. In this model we consider linear friction terms but in a new way that has not been considered in previous works. Our results are in good agreement with the results of simulation of viscous flow. This model is applicable both in determination of melt flows in molten aluminum and cryolite layers and also in finding the extreme limit for stability of interfacial waves in an aluminum reduction cell  

    Ti-rich TiO2 tubular nanolettuces by electrochemical anodization for all-solid-state high-rate supercapacitor devices

    , Article ChemSusChem ; Volume 12, Issue 17 , 2019 , Pages 4064-4073 ; 18645631 (ISSN) Qorbani, M ; Khajehdehi, O ; Sabbah, A ; Naseri, N ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    Supercapacitors store charge by ion adsorption or fast redox reactions on the surface of porous materials. One of the bottlenecks in this field is the development of biocompatible and high-rate supercapacitor devices by scalable fabrication processes. Herein, a Ti-rich anatase TiO2 material that addresses the above-mentioned challenges is reported. Tubular nanolettuces were fabricated by a cost-effective and fast anodization process of Ti foil. They attained a large potential window of 2.5 V in a neutral electrolyte owing to the high activation energy for water splitting of the (1 0 1) facet. Aqueous and all-solid-state devices showed diffusion time constants of 46 and 1700 ms, as well as... 

    The synergic generation of CO3[rad]− and O2[rad]− radicals in a novel photocatalytic fuel cell for efficient oxidation of carbonate-containing wastewater and simultaneous electricity production

    , Article Applied Catalysis B: Environmental ; Volume 277 , 2020 Chen, F ; Li, J ; Xia, L ; Wang, J ; Chen, S ; Zhang, Y ; Bai, J ; Li, L ; Zhou, T ; Rahim, M ; Xu, Q ; Zhou, B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The treatment of refractory wastewater and energy utilization are challenging environmental issues. Carbonate as the most common anion abounds in the aquatic environment. Here, we proposed a novel method to degrade carbonate-containing wastewater and simultaneous electricity generation via the combined oxidation of CO3[rad]− and O2[rad]− radicals. The CO3[rad]− radical was produced by the photoelectrode of TiO2/Si photovoltaic cell with the rear Si photovoltaic cell providing external bias, and the O2[rad]− radical was produced from the generation of H2O2 on a gas diffusion electrode (GDE), and they were both further enhanced from the activation reaction of H2O2 with HCO3− electrolyte. The... 

    The role of ion partitioning in electrohydrodynamic characteristics of soft nanofluidics: Inclusion of EDL overlap and steric effects

    , Article Chemical Engineering Science ; Volume 190 , 2018 , Pages 443-458 ; 00092509 (ISSN) Reshadi, M ; Saidi, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, we aim to account for the partitioning of finite sized ions and electric double layer (EDL) overlapping effects on the electrostatics and hydrodynamics of soft nanofluidics by stablishing a modified Poisson-Boltzmann (MPB) equation enjoying mean field approach. The application of the present MPB equation enables us to describe the interaction between the steric effect and electrostatic repulsion of EDL ions due to permittivity difference of polyelectrolyte layer (PEL) and electrolyte solution. Utilizing the Debye-Hückel approximation pertinent to low surface potentials, we analytically derive the solutions of electric potential and velocity profiles of mixed electroosmotic and...