Loading...
Search for: electrolytes
0.015 seconds
Total 322 records

    Synergistic role of carbon nanotube and SiCn reinforcements on mechanical properties and corrosion behavior of Cu-based nanocomposite developed by flake powder metallurgy and spark plasma sintering process

    , Article Materials Science and Engineering A ; Volume 786 , 2020 Akbarpour, M. R ; Mousa Mirabad, H ; Khalili Azar, M ; Kakaei, K ; Kim, H .S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Hybrid-reinforced metals are novel composite materials in which nano-phases including nanoparticles and nanotubes/nanosheets are used simultaneously to reinforce metals or alloys to enhance physical, mechanical, wear and other properties. In this research, Cu/(CNT-SiC) hybrid nanocomposite was synthesized using flake powder metallurgy and spark plasma sintering method and the effects of hybrid reinforcements on microstructural, wear and corrosion properties of the developed material were investigated and compared with those of copper. Microstructural characterization showed reduction of average grain size from 419 to 307 nm and increase of low angle grain boundaries with the introduction and... 

    Synergistic effect of Ni-based metal organic framework with graphene for enhanced electrochemical performance of supercapacitors

    , Article Journal of Materials Science: Materials in Electronics ; Volume 30, Issue 13 , 2019 , Pages 12351-12363 ; 09574522 (ISSN) Azadfalah, M ; Sedghi, A ; Hosseini, H ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Developing advanced electrode materials with metal–organic frameworks (MOFs) has increasingly attracted attentions as an effective method for improving supercapacitors performances. However, their poor conductivity has limited their use in energy applications. In this paper, an effective strategy is presented to reduce the electric resistance of MOFs by the in situ synthesis of Ni-based MOFs with graphene (Ni-MOF/graphene). The fabricated Ni-MOF/graphene composite was characterized by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), Raman spectra, Brunauer–Emmett–Teller (BET) and... 

    Surface passivation of titanium dioxide via an electropolymerization method to improve the performance of dye-sensitized solar cells

    , Article RSC Advances ; Volume 6, Issue 15 , 2016 , Pages 12537-12543 ; 20462069 (ISSN) Mazloum Ardakani, M ; Khoshroo, A ; Taghavinia, N ; Hosseinzadeh, L ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In dye-sensitized solar cells recombination reactions at the TiO2 photoanode with the electrolyte interface plays a critical role in cell efficiency. Recombination of injected electrons in the TiO2 with acceptors in the electrolyte usually occurs on uncovered areas of TiO2 surfaces. In this work, we report electropolymerization of polymer films on nanoporous TiO2 electrode surfaces using an ionic liquid as the growth medium. The choice of ionic liquid as the growth medium for this study is based on the insolubility of dye N719 in this electrolyte, thus avoiding dye molecule detachment from the TiO2 photoanode surface over the entire potential range investigated during the... 

    Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension

    , Article Vacuum ; Vol. 108, issue , 2014 , p. 12-19 Sarbishei, S ; Faghihi Sani, M. A ; Mohammadi, M. R ; Sharif University of Technology
    Abstract
    Alumina-silicate composite coatings were formed on titanium substrate by plasma electrolytic oxidation (PEO) process using a silicate-based electrolyte containing alumina nanoparticles. Microstructure, chemical and phase compositions, and thickness of the coatings were investigated to determine, coating mechanism and probable reactions during the process. The effect of processing time on corrosion resistance of the coatings was investigated using the potentiodynamic polarization test. Barrier layer (TiO2) formation, micro arcs occurrence, and electrolyte ionization were the main stages of PEO coating growth process. Alumina nanoparticles were incorporated into the coating by cataphoretic and... 

    Study on the morphology and photocatalytic activity of TiO2 nanotube arrays produced by anodizing in organic electrolyte with Ni, Na, and C as dopants

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 12 , 2018 , Pages 3883-3893 ; 14328488 (ISSN) Alitabar, M ; Yoozbashizadeh, H ; Sharif University of Technology
    Abstract
    The main purpose of this research work is to investigate the effect of nickel as metal dopant on the morphology and photocatalytic activity of TiO2 nanotube arrays synthesized in the organic electrolyte by anodizing process containing sodium carbonate as an additive (TNAS). In order to characterize the synthesized nanotubes, various analyses such as FESEM, XRD, FTIR, XPS, DRS, and EIS were applied. The results of XPS and FTIR tests evaluate the participation of sodium (Na), nickel (Ni), and carbon (C) in the lattice of nanotubes as dopants. According to the DRS and UV-visible tests results, the band gap energy of TiO2 nanotube arrays decreases from 3.20 to ~ 2.64 eV as well as the absorption... 

    Study of the effect of frequency in pulse electrodeposition on Au-Ni from cyanide-citrate electrolyte by the aim of design of experiment

    , Article Advanced Materials Research, 15 December 2011 through 18 December 2011 ; Volume 410 , December , 2012 , Pages 377-381 ; 10226680 (ISSN) ; 9783037853160 (ISBN) Moakhar, R. S ; Imanieh, I ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Abstract
    The aim of this paper is to study the influence of frequency in pulse electrodeposition, on the current efficiency, Ni content and surface morphology of deposits from a novel cyanide-citrate electrolyte with 20 mM gold as KAu(CN) 2 and 7 mM NiSO 4, with the aim of design of experiment by respond surface method (RSM). Frequency was in the range of 1-200 Hz in constant average current density, temperature, and duty cycle of 7 mA/cm 2, 59 °C and 55% respectively. Composition of the deposits was determined by atomic absorption spectroscopy (AAS). Additionally, deposits were characterized by scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDS). It was shown that from... 

    Study of electrical conductivity of different water liquids and electrolytes

    , Article Australian Journal of Basic and Applied Sciences ; Volume 4, Issue 8 , 2010 , Pages 3985-3997 ; 19918178 (ISSN) Golnabi, H ; Sharifian, M ; Sharif University of Technology
    2010
    Abstract
    In this study electrical conductivities of pure, distilled, municipal, industrial and river water liquids along with those of different electrolyte solutions are computed at room temperature (25 °C) and compared with the experimental results. For experiment, using a measuring module both R and C value of the water samples are measured by using two different cylindrical cells. The obtained RC product for the long and short cell probes are compared for different water samples. Obtained results give the relaxation time, which is the measure of the conduction relaxation and for a good conducting medium such a time is very short. The relaxation time for the salt solution is about 0.07044 ms... 

    Study and optimization of amino acid extraction by emulsion liquid membrane

    , Article Separation Science and Technology ; Volume 43, Issue 11-12 , 2008 , Pages 3075-3096 ; 01496395 (ISSN) Mohagheghi, E ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    2008
    Abstract
    A batch extraction of an essential amino acid, phenylalanine, from an aqueous solution of different concentrations by an Emulsion Liquid Membrane (ELM) was developed using D2EHPA as a cationic carrier, Span 80 as the surfactant, paraffin, and kerosene as the diluents, and HCl as the internal electrolyte. All effective parameters such as the initial pH of the aqueous external phase, the electrolyte concentration in the aqueous internal phase, carrier, and surfactant concentration in the emulsion, the volume ratio of the organic to aqueous internal phase (Roi), the volume ratio of the W/O emulsion to the aqueous external phase (Rew) and time were examined and optimized using the Taguchi... 

    Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation

    , Article Surface and Coatings Technology ; Vol. 238 , 2014 , pp. 75-79 ; ISSN: 02578972 Einkhah, F ; Lee, K. M ; Sani, M. A. F ; Yoo, B ; Shin, D. H ; Sharif University of Technology
    Abstract
    The formation of the oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation (PEO) has been investigated. After the PEO process first in an alkaline phosphate electrolyte and second in an acid electrolyte containing K2ZrF6, the microstructure, chemical composition, and phase composition of the oxide layers were analyzed via SEM, EDS, and XRD, respectively. The electrochemical reaction and the high temperature caused by the plasma discharges in the electrolyte were the main factors leading to the fabrication of an oxide layer containing Zr compounds on AZ31 Mg alloy. The micro-pores were filled with ZrO2 formed during the PEO process. The results of... 

    Stable dye-sensitized solar cells based on a gel electrolyte with ethyl cellulose as the gelator

    , Article Applied Physics A: Materials Science and Processing ; Volume 120, Issue 3 , September , 2015 , Pages 869-874 ; 09478396 (ISSN) Vasei, M ; Tajabadi, F ; Jabbari, A ; Taghavinia, N ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    A simple gelating process is developed for the conventional acetonitrile-based electrolyte of dye solar cells, based on ethyl cellulose as the gelator. The electrolyte becomes quasi-solid-state upon addition of an ethanolic solution of ethyl cellulose to the conventional acetonitrile-based liquid electrolyte. The photovoltaic conversion efficiency with the new gel electrolyte is only slightly lower than with the liquid electrolyte, e.g., 6.5 % for liquid electrolyte versus 5.9 % for gel electrolyte with 5.8 wt% added ethyl cellulose. Electrolyte gelation has small effect on the ionic diffusion coefficient of iodide, and the devices are remarkably stable for at least 550 h under irradiation... 

    Specific picomolar detection of a breast cancer biomarker her-2/neu protein in serum: electrocatalytically amplified electroanalysis by the aptamer/peg-modified electrode

    , Article ChemElectroChem ; Volume 4, Issue 4 , 2017 , Pages 872-879 ; 21960216 (ISSN) Salimian, R ; Kékedy Nagy, L ; Ferapontova, E. E ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    Abstract
    Specific and sensitive electroanalysis of blood-circulating protein cancer biomarkers is often complicated by interference from serum proteins nonspecifically adsorbing at the biosensing interface and masking specific reactions of interest. Here, we have developed an electrocatalytically amplified assay for specific and sensitive analysis of human epidermal growth factor receptor-2 (HER-2/neu, a protein cancer biomarker over-expressed in breast cancers) that allows us to avoid both the interference from bovine serum albumin (BSA) and electrocatalytic amplification of the signal stemming from the specific aptamer−HER-2/neu binding. A HER-2/neu-specific thiolated aptamer sequence was... 

    Simultaneous electrodeposition of reduced graphene oxide/ag nanoparticles as a sensitive layer for voltammetric determination of tinidazole

    , Article Nano ; Volume 12, Issue 6 , 2017 ; 17932920 (ISSN) Shahrokhian, S ; Navabi, M ; Mohammadi, R ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    A stable composite film of silver nanoparticles (Ag NPs) decorated on reduced graphene oxide is prepared by a two-step simple procedure. The surface morphology of the modified electrode is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The electrochemical behavior of tinidazole (TNZ) on the surface of the modified electrode is investigated by linear sweep voltammetry and electrochemical impedance spectroscopy. The prepared composite electrode acts as a highly sensitive platform for the voltammetric determination of TNZ, leading to a significant increase in the reduction peak current of TNZ. The effects of experimental parameters such as the... 

    Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode

    , Article Environmental Science and Technology ; Volume 46, Issue 12 , 2012 , Pages 6584-6593 ; 0013936X (ISSN) Savizi, I. S. P ; Kariminia, H. R ; Bakhshian, S ; Sharif University of Technology
    2012
    Abstract
    Effect of cathodic enzymatic decolorization of reactive blue 221 (RB221) on the performance of a dual-chamber microbial fuel cell (MFC) was investigated. Immobilized laccase on the surface of a modified graphite electrode was used in the cathode compartment in order to decolorize the azo dye and enhance the oxygen reduction reaction. First, methylene blue which is an electroactive polymer was electropolymerized on the surface of a graphite bar to prepare the modified electrode. Utilization of the modified electrode with no enzyme in the MFC increased the power density up to 57% due to the reduction of internal resistance from 1000 to 750 Ω. Using the electropolymerized-enzymatic cathode... 

    Silver fiber fabric as the current collector for preparation of graphene- based supercapacitors

    , Article Electrochimica Acta ; Volume 227 , 2017 , Pages 246-254 ; 00134686 (ISSN) Mehrabi Matin, B ; Shahrokhian, S ; Iraji zad, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    During the past few years, a considerable attention has been devoted to the development of textile- based energy storage devices and wearable electronics applications. In this paper, for the first time, we report a flexible high performance graphene-based supercapacitor using silver fiber fabric as the current collector. The silver fiber fabric offers remarkable advantages such as light weight, mechanical flexibility and ease of integration with electronic textiles, which well-suited for wearable energy storage devices. A new hybrid material of graphene-silver fiber fabric (rGO/SFF) was prepared through a facile electrophoretic deposition of graphene and being used as a binder-free flexible... 

    Shedding light on pseudocapacitive active edges of single-layer graphene nanoribbons as high-capacitance supercapacitors

    , Article ACS Applied Energy Materials ; Volume 2, Issue 5 , 2019 , Pages 3665-3675 ; 25740962 (ISSN) Qorbani, M ; Esfandiar, A ; Mehdipour, H ; Chaigneau, M ; Irajizad, A ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In the field of energy storage by high-rate supercapacitors, there has been an upper limit for the total interfacial capacitance of carbon-based materials. This upper limit originates from both quantum and electric double-layer capacitances. Surpassing this limit has been the focus of intense research in this field. Here, we precisely investigate the effect of chemical functional groups and physical confinement on the electrochemical performance of graphene nanoribbons. We present the results of a quasi-one-dimensional single-layer graphene nanoribbon (120 nm in width and -100 μm in length) microelectrode fabricated by mechanical exfoliation of graphite, followed by electron beam lithography... 

    Self-organized titanium oxide nanotubes prepared in phosphate electrolytes: Effect of voltage and fluorine concentration

    , Article ECS Transactions, 25 April 2010 through 30 April 2010 ; Volume 28, Issue 7 , April , 2010 , Pages 67-74 ; 19385862 (ISSN) ; 9781607681830 (ISBN) Mahshid, S ; Dolati, A ; Goodarzi, M ; Askari, M ; Ghahramaninezhad, A ; ECS All Divisions ; Sharif University of Technology
    2010
    Abstract
    TiO2 a nanotube array was prepared using an anodization process. The process proceeded in a two-electrode cell containing of platinum sheet as the cathode electrode. Two phosphate-base electrolyte solutions containing different amounts of HF and NH4F were prepared. Different concentration of fluorine ions were examined in respected electrolytes. Current transient techniques were used to produce the TiO2 nanotubes at constant voltage of 18-25V. It was revealed that anodization at 18-22V, in so-called electrolytes would end up to nano-tubular structure. However the tubular structure prepared at 20V and from phosphate electrolyte containing of 0.5 wt% NH4F as well as 0.5 wt% HF, was recognized... 

    Self-limited growth of large-area monolayer graphene films by low pressure chemical vapor deposition for graphene-based field effect transistors

    , Article Ceramics International ; Volume 43, Issue 17 , 2017 , Pages 15010-15017 ; 02728842 (ISSN) Kiani, F ; Razzaghi, Z ; Ghadiani, B ; Tamizifar, M ; Mohmmadi, M. H ; Simchi, A ; Sharif University of Technology
    Abstract
    During the last decade, fabrication of high-quality graphene films by chemical vapor deposition (CVD) for nanoelectronics and optoelectronic applications has attracted increasing attention. However, processing of large-area monolayer and defect-free graphene films is still challenging. In this work, we have studied the effect of processing conditions on the self-limited growth of graphene monolayers on copper foils during low pressure CVD both experimentally and theoretically based on thermokinetics and kinetics of Langmuir adsorption. The effect of copper pre-treatment, growth time, and carbon potential of the atmosphere (indicated by the methane-to-hydrogen gas ratio, r) on the quality of... 

    Ruthenium/Ruthenium oxide hybrid nanoparticles anchored on hollow spherical Copper-Cobalt Nitride/Nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation

    , Article Journal of Colloid and Interface Science ; Volume 626 , 2022 , Pages 1070-1084 ; 00219797 (ISSN) Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Exploring bi-functional electrocatalysts with excellent activity, good durability, and cost-effectiveness for electrochemical hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte is a critical step towards a sustainable hydrogen economy. Three main features such as high density of active sites, improved charge transfer, and optimized electronic configuration have positive effects on the electrocatalyst activity. In this context, understanding structure–composition–property relationships and catalyst activity is very important and highly desirable. Herein, for the first time, we present the design and fabrication of novel MOF-derived ultra-small Ru/RuO2 nanoparticles... 

    Role of nitrogen doping at the surface of titanium nitride thin films towards capacitive charge storage enhancement

    , Article Journal of Power Sources ; Volume 359 , 2017 , Pages 349-354 ; 03787753 (ISSN) Achour, A ; Chaker, M ; Achour, H ; Arman, A ; Islam, M ; Mardani, M ; Boujtita, M ; Le Brizoual, L ; Djouadi, M. A ; Brousse, T ; Sharif University of Technology
    Abstract
    We recently reported an impressive cycling stability (over 20,000 cycles) of titanium nitride (TiN) electrodes with high specific capacitance. It is anticipated that nitrogen (β−N) doping in the oxidized surface of TiN film plays a crucial role in charge storage mechanism and stability of this material. In this work, we offer an evidence on the effect of β−N doping on improvement in specific capacitance of vacuum annealed TiN thin films. The annealing of the TiN films leads to the diffusion of the excess β−N from sub-surface to oxidized TiN film surface without further oxidation of the electrode surface. We demonstrate an increase in the TiN areal capacitance upon an increase in the amount... 

    Reproducible electrochemical analysis of nanostructured Cu2O using a non-aqueous 3-methoxypropionitrile-based electrolyte

    , Article Electrochemistry Communications ; Volume 86 , 2018 , Pages 1-5 ; 13882481 (ISSN) Shooshtari, L ; Iraji zad, A ; Mohammadpour, R ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Cu2O is an attractive material in terms of semiconducting properties and is considered a leading candidate in all-oxide photovoltaics. Electrochemical analysis of Cu2O, including Mott-Schottky (MS) and impedance spectroscopy (IS), provides a wealth of data on charge carriers, Fermi level and interface properties. MS and IS are usually measured in aqueous solutions. However, Cu2O is easily reduced or oxidized to Cu or CuO in aqueous solutions, the layer peels off after the analysis and there is a small voltage window for the tests. In some cases, an anti-corrosive n-type barrier layer is employed on top of the bare Cu2O electrode to make the measurement possible, which could result in...