Loading...
Search for: elevation
0.007 seconds

    Application of Endurance Time Method in Nonlinear Dynamic analysis of Elevated Tanks

    , M.Sc. Thesis Sharif University of Technology Rahmati, Mohammad (Author) ; Esmaeil Pourestekanchi, Homayoon (Supervisor)
    Abstract
    Endurance Time (ET) is a fairly comprehensive analytical method based on time history analysis applied for evaluating structural systems excited by dynamic loading of earthquake. In such evaluation assessment measure is based on endurance time of structure versus applied accelerogram function and parameters such as stiffness, lateral resistance, period of vibration and dynamic characteristics are not used directly. In this research nonlinear dynamic analysis of elevated steel tanks with laterally braced framed tower under the loading of earthquake records and ET accelerograms was studied and effectivity of ET method in analyzing such elevated tanks was verified. Due to complication of... 

    Al-Al3Ti nanocomposite produced in situ by two-step hot-press sintering

    , Article IOP Conference Series: Materials Science and Engineering ; Volume 40, Issue 1 , 2012 ; 17578981 (ISSN) Nikfar, B ; Ghiabakloo, H ; Hosseini, H. R. M ; Mohammadi, A. V ; Sharif University of Technology
    2012
    Abstract
    Aluminum reinforced with a large amount (up to about 55 vol.%) of Al 3Ti particles can be fabricated from Al-20Ti elemental nanometer-sized powder mixture via in-situ two step hot press sintering (TSS). For production of intermetallic reinforced in-situ composite, TSS can provide elevated temperature to facilitate the formation of intermetallic phase in situ and hot consolidation to form a fully dense solid. The first step sintering was employed at a higher temperature to obtain an initial high density, and the second step was held at a lower temperature by isothermal sintering for more time than the first one to increase bulk density without significant grain growth. The optimum TSS regime... 

    Near-optimal terrain collision avoidance trajectories using elevation maps

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 47, Issue 4 , October , 2011 , Pages 2490-2501 ; 00189251 (ISSN) Malaek, S. M ; Abbasi, A ; Sharif University of Technology
    2011
    Abstract
    The main attempt of this paper is to present a new methodology to model a generic low-level flight close to terrain, which guarantees terrain collision avoidance. Benefiting the advantages of high-speed computer technology, this method uses satellite elevation maps to generate so-called "quad-tree forms". The latter is then used to find the optimal trajectories for low-level flights. The novelty of this approach, entitled the "cost map," lies in the integration of aircraft dynamics into the segmented map. This procedure results in some near-optimal trajectories with respect to aircraft dynamics that could easily be used for minimization of flight path together with pilot effort. Different... 

    Mechanisms governing microstructural evolution during consolidation of nanoparticles

    , Article Materials and Manufacturing Processes ; Volume 30, Issue 11 , 2015 , Pages 1397-1402 ; 10426914 (ISSN) Tavakol, M ; Mahnama, M ; Naghdabadi, R ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    In micron-scale, powder consolidation process is driven by diffusion phenomenon, while in nano-scale the higher surface energy of particles leads to some anomalous behaviors within the process. In order to investigate the nano-sintering occurrence, an atomistic approach is employed via molecular dynamics simulations. Within this approach, the effect of particle size and temperature is examined. The study of particle structure emphasizes on a transition on the governing mechanism of process depending on the material energy levels. The results show that in a specific particle size at low temperatures, the main sintering mechanism is the plastic deformation, while at elevated temperatures it... 

    Comparison of the effect of temperature on asphaltene destabilisation in light and heavy live oils

    , Article International Journal of Oil, Gas and Coal Technology ; Volume 16, Issue 4 , 2017 , Pages 342-362 ; 17533317 (ISSN) Mohammadi, S ; Rashidi, F ; Mousavi Dehghani, S. A ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    The main objective of this study is to investigate the effect of temperature on asphaltene destabilisation (precipitation/aggregation) in live oils at elevated pressure conditions. Here, the asphaltene related experiments were performed using solid detection systems, high pressure microscope, and high pressure-high temperature filtration apparatuses in two Iranian light and heavy live oils with different characteristics and stability. The obtained results were interpreted in terms of asphaltene onset pressure, size distribution and average diameter of the aggregates, fractal analysis of the aggregates structures, and the amount of asphaltene precipitation. As well, the results of the... 

    Effect of intumescent paint coating on mechanical properties of FRP bars at elevated temperature

    , Article Polymer Testing ; Volume 71 , 2018 , Pages 72-86 ; 01429418 (ISSN) Houshmand Khaneghahi, M ; Pournamazian Najafabadi, E ; Shoaei, P ; Vatani Oskouei, A ; Sharif University of Technology
    Abstract
    This paper investigates the influence of intumescent paint on the performance of FRP bars subjected to low (25–450 °C) and severe (450–800 °C) elevated temperatures. In this research, glass and carbon FRP bars with epoxy resin and coated with nitrogen-based intumescent paint were used. In addition to the temperature effects, a variety of FRP bar diameters were employed to determine its effect on the tensile behavior of FRP bars in the presence of intumescent paint. Further, Bayesian regression methods and ANOVA (ANalysis Of VAriance) were applied on the results to develop a predictive model form and quantify the contribution of the variables in the tensile performance of FRP bars,... 

    The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet

    , Article Materials Science and Engineering A ; Volume 515, Issue 1-2 , 2009 , Pages 162-168 ; 09215093 (ISSN) Rafizadeh, E ; Mani, A ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Commercial purity copper sheets were subjected to a severe plastic deformation technique known as constrained groove pressing (CGP). The effect of pass number, intermediate and post-annealing on the yield strength, hardness and final microstructure of the copper specimens were investigated. The initial pass increases the strength much more than the subsequent passes. Intermediate and post-annealing up to 300 °C cannot change the mechanical properties significantly and even in some cases improve the strength and hardness while reduce the hardness inhomogeneity. Microstructure after post-annealing at elevated temperatures shows abnormal grain growth. © 2009 Elsevier B.V. All rights reserved  

    Inverse emulsion polymerization of triple monomers of acrylamide, maleic anhydride, and styrene to achieve highly hydrophilic–hydrophobic modified polyacrylamide

    , Article Journal of Applied Polymer Science ; Volume 136, Issue 29 , 2019 ; 00218995 (ISSN) Lalehgani, Z ; Ramazani S. A., A ; Tamsilian, Y ; Shirazi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    The purpose of this study was the production of copolymers and terpolymers with highly hydrophilic–hydrophobic properties, using inexpensive and available monomers as potential enhancing oil recovery (EOR) and water production control agents for high-temperature and high-salinity (HTHS) oil reservoirs. For this purpose, several copolymers and terpolymers with different molar percentage of acrylamide/styrene, acrylamide/maleic anhydride, and acrylamide/styrene/maleic anhydride were synthesized by the inverse emulsion polymerization technique. The presence of hydrophobic styrene and hydrophilic maleic anhydride monomers in the copolymer and terpolymer structure, provided some unique properties... 

    Effect of thickness and reinforcement configuration on flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures

    , Article Composites Part B: Engineering ; Volume 157 , 2019 , Pages 76-99 ; 13598368 (ISSN) Bazli, M ; Ashrafi, H ; Jafari, A ; Zhao, X.-L ; Gholipour, H ; Oskouei, A. V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study investigates the flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures. The effect of fibre's length and orientation, laminate's thickness, and exposure time is studied. A total number of 540 tests in terms of three-point bending and Charpy impact tests were conducted to obtain the mechanical properties. In addition, SEM analyses were carried out to investigate the degradation mechanisms. Finally, statistical study was conducted to investigate the contribution of each variable and develop probabilistic models using ANOVA and linear Bayesian regression method. The results showed that generally the flexural and impact properties of GFRP laminates... 

    Synthesis and morphology optimization of electrospun SiBNC nanofibers

    , Article Ceramics International ; Volume 46, Issue 5 , 2020 , Pages 6052-6059 Asadi-Pakdel, K ; Mehdinavaz Aghdam, R ; Shahedi Asl, M ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    SiBNC nanofibers were synthesized through the polymeric route by a one-pot synthesis approach. DMTA (dichloroboryl methyl trichlorosilyl amine) polymer was selected as pre-ceramic for SiBNC, which was shaped into nanofibers by electrospinning. Then, the nanofibers were cured in an inert atmosphere in order to obtain the final ceramic. By changing the curing atmosphere, the compound of final ceramic has been manipulated. In addition, the ceramic yield of DMTA as a preceramic was increased in the nitrogen atmosphere. The effects of applied voltage, solution concentration, and feeding rate on the morphology of final electrospun ceramic nanofibers were also investigated. Final ceramic remains... 

    Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles

    , Article Construction and Building Materials ; Volume 231 , 2020 Bazli, M ; Jafari, A ; Ashrafi, H ; Zhao, X. L ; Bai, Y ; Singh Raman, R. K ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The present research examines the effects of UV radiation, moisture and elevated temperature on the mechanical properties of GFRP pultruded profiles. Flexural, compressive and tensile properties of different GFRP sections were studied after they were exposed for 1000, 1500, 2000 and 3000 h to UV radiation and water vapour condensation cycles. Mechanical tests, including three-point bending, compression and tension tests, SEM analyses, and statistical studies were conducted to gather comprehensive results. The results showed that the mechanical properties of various GFRP sections generally decreased with the duration of conditioning: however, the rate of the decrease that was only slight up... 

    Vibrations and stability analysis of double current-carrying strips interacting with magnetic field

    , Article Acta Mechanica ; 2020 Hosseinian, A. R ; Firouz Abadi, R. D ; Sharif University of Technology
    Springer  2020
    Abstract
    Interactive vibrations and buckling of double current-carrying strips (DCCS) are investigated in this study. Considering the rotational and transverse deformation of the strip, four coupled equations of motion are obtained using Hamilton’s principle. Using the Galerkin method, mass and stiffness matrices are extracted and the stability of the system is determined by solving the eigenvalue problem. Effects of pretension and elevated temperature on the stability of DCCS are studied for three types of materials and various arrangements. Finally, the effect of horizontal or vertical distance between strips on the critical current value is investigated. According to the results, the effects of... 

    Reducing ion migration in methylammonium lead tri-bromide single crystal via lead sulfate passivation

    , Article Journal of Applied Physics ; Volume 127, Issue 18 , April , 2020 Mahapatra, A ; Parikh, N ; Kumari, H ; Pandey, M. K ; Kumar, M ; Prochowicz, D ; Kalam, A ; Tavakoli, M. M ; Yadav, P ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Surface passivation of organic-inorganic halide perovskites (OIHPs) is a crucial step to annihilate the surface defects and to control the deteriorated ion migration phenomenon. Here, we study the role of lead sulfate (PbSO4) as an effective passivator in OIHP single crystals (SCs). Using impedance spectroscopy, we evaluate the ion migration and electrical properties of lead sulfate-passivated methylammonium lead tri-bromide (MAPbBr3) SCs. We found that the low-frequency impedance response that is assigned to the ionic motion in the MAPbBr3 SC is strongly affected by the inorganic PbSO4 surface treatment. The activation energy corresponding to the ion migration of MAPbBr3 SC is increased... 

    Surveillance radar target detection with the fourier-hough transform

    , Article 2008 International Radar Symposium, IRS, Wroclaw, 21 May 2008 through 23 May 2008 ; 2008 ; 9788372076212 (ISBN) Malek Mohammadi, M ; Moqiseh, A ; Nayebi, M. M ; Sharif University of Technology
    2008
    Abstract
    In a typical surveillance radar, decision about the existence of a target in certain range-azimuth-elevation cell is made from the echo received in current scan, while still there is useful information in history of that range cell that is not considered in decision making. Based on the potential of the Hough Transform to use history of both range and Doppler information, a new method to increase the probability of detection in surveillance radars is proposed. The new method uses a 3D data space and a special projection to detect targets and extract range, speed, and acceleration of maneuvering targets simultaneously  

    Processing of Al-20Si-5Fe-2X(X=Cu, Ni, Cr) alloys by melt-spinning and hot-pressing

    , Article European International Powder Metallurgy Congress and Exhibition, Euro PM 2008, Mannheim, 29 September 2008 through 1 October 2008 ; Volume 2 , 2008 , Pages 99-104 ; 9781899072033 (ISBN) Rajabi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2008
    Abstract
    Al-20Si-5Fe-2X (X=Cu, Ni, Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400°C for 60 min. Optical and transmission electron microscopy (TEM), X-ray diffractometry (XRD), and hardness test were used to evaluate the microstructure and mechanical strength of the ribbons and hot consolidated specimens. The compressive strength of the specimens at ambient and elevated temperatures was also examined. The microstructure of the ribbons exhibited featureless and dendritic zones, and contains spherically-shaped Si particles with an average diameter of 20 nm. After hot-pressing, ultrafine Si (110-150 nm) and iron-containing intermetallic particles were formed. The... 

    Vibrations and stability analysis of double current-carrying strips interacting with magnetic field

    , Article Acta Mechanica ; Volume 232, Issue 1 , 2021 , Pages 229-245 ; 00015970 (ISSN) Hosseinian, A. R ; Firouz Abadi, R. D ; Sharif University of Technology
    Springer  2021
    Abstract
    Interactive vibrations and buckling of double current-carrying strips (DCCS) are investigated in this study. Considering the rotational and transverse deformation of the strip, four coupled equations of motion are obtained using Hamilton’s principle. Using the Galerkin method, mass and stiffness matrices are extracted and the stability of the system is determined by solving the eigenvalue problem. Effects of pretension and elevated temperature on the stability of DCCS are studied for three types of materials and various arrangements. Finally, the effect of horizontal or vertical distance between strips on the critical current value is investigated. According to the results, the effects of... 

    Formability of tri-layered IF240/AZ31/IF240 composite with strong bonding: experimental and finite element modeling

    , Article Journal of Materials Engineering and Performance ; Volume 30, Issue 11 , 2021 , Pages 8402-8411 ; 10599495 (ISSN) Abedi, R ; Akbarzadeh, A ; Hadiyan, B ; Hashemi, R ; Sharif University of Technology
    Springer  2021
    Abstract
    In this work, the formability of a hybrid material of Interstitial-Free 240 (IF240) steel and AZ31 magnesium alloy as IF240/AZ31/IF240 tri-layered sheets was investigated. For this purpose, the bonding feasibility of the high-formability IF240 steel and low-formability AZ31 sheets was first assessed. Then, the hot formability behavior of the manufactured laminated composite was evaluated. The rolling of the preheated samples established the layer bonding. The bonding strength was determined using the shear punch test. The texture and its effects on the forming behavior were studied using the x-ray Goniometry method. Nakazima dome tests were employed at ambient and elevated temperatures to... 

    Formability of Tri-layered IF240/AZ31/IF240 composite with strong bonding: Experimental and finite element modeling

    , Article Journal of Materials Engineering and Performance ; Volume 30, Issue 11 , 2021 , Pages 8402-8411 ; 10599495 (ISSN) Abedi, R ; Akbarzadeh, A ; Hadiyan, B ; Hashemi, R ; Sharif University of Technology
    Springer  2021
    Abstract
    In this work, the formability of a hybrid material of Interstitial-Free 240 (IF240) steel and AZ31 magnesium alloy as IF240/AZ31/IF240 tri-layered sheets was investigated. For this purpose, the bonding feasibility of the high-formability IF240 steel and low-formability AZ31 sheets was first assessed. Then, the hot formability behavior of the manufactured laminated composite was evaluated. The rolling of the preheated samples established the layer bonding. The bonding strength was determined using the shear punch test. The texture and its effects on the forming behavior were studied using the x-ray Goniometry method. Nakazima dome tests were employed at ambient and elevated temperatures to... 

    A novel structural joint with the potential of fire-tolerance improvement

    , Article 24th International Conference on Offshore Mechanics and Arctic Engineering, 2005, Halkidiki, 12 June 2005 through 17 June 2005 ; Volume 1 B , 2005 , Pages 747-754 Khonsari, S. V ; Jamshidi Vismeh, A. R ; England, G. L ; Fattahian, N ; Sharif University of Technology
    2005
    Abstract
    A new innovative 'universal' structural joint with multiple applications was devised. The two major conceived contexts for the use of this joint are 'joining beams to columns, ' and 'joining diagonal braces to horizontal ones. ' The main features of this joint are its high rotational capacity, its high shear deformation capacity, its high energy-dissipation capacity, its ability to contain damage, and its repalceability. Due to its geometry, it can well lend itself to protection measures against fire, normally practiced by the involving industries. This makes it a good candidate for being used in structures related to oil and gas industry, offshore or onshore. Through numerical modelling of... 

    Evaluation of energy-based modal pushover analysis in reinforced concrete frames with elevation irregularity

    , Article Scientia Iranica ; Volume 17, Issue 2 A , 2010 , Pages 96-106 ; 10263098 (ISSN) Hashemi, M. J ; Mofid, M ; Sharif University of Technology
    2010
    Abstract
    In nonlinear static (pushover) methods of analysis as an alternative to time history analysis, the capacity curve of the structure is established with respect to the roof displacement. Disproportionate increases in the roof displacement and even outright reversals of the higher modes can distort the capacity curve of the equivalent single degree of freedom system in these kinds of method, including MPA. To overcome this problem, recently, "Energy-Based" the Modal Pushover Analysis (Energy-Based MPA) method has been introduced. In this method, the absorbed energy and/or the external work in the pushover analysis is considered. Accordingly, the assessment of the Energy-Based MPA method is...