Loading...
Search for: elevation
0.011 seconds

    A trace-time framework for prediction of elevation angle over land mobile LEO satellites networks

    , Article Wireless Personal Communications ; Volume 62, Issue 4 , February , 2012 , Pages 793-804 ; 09296212 (ISSN) Seyedi, Y ; Rahimi, F ; Sharif University of Technology
    2012
    Abstract
    Elevation angle is one of the most significant parameters of land mobile satellite channels, subject to rapid variations in the case of Low Earth Orbit (LEO) satellite systems. In this paper a novel trace-based framework is proposed and analyzed which is capable of predicting elevation angle as a function of time during satellite visibility window. Trace-time based modeling makes the framework practical for real-time evaluation of elevation angle and its alteration incurred by communication links in LEO satellite systems. The proposed method is particularly suitable for development of communication channel models and services in mobile LEO satellite networks where path variability is of... 

    Multi criteria site selection model for wind-compressed air energy storage power plants in Iran

    , Article Renewable and Sustainable Energy Reviews ; Vol. 32 , April , 2014 , pp. 579-590 ; ISSN: 13640321 Satkin, M ; Noorollahi, Y ; Abbaspour, M ; Yousefi, H ; Sharif University of Technology
    Abstract
    In this research, a site selection method for wind-compressed air energy storage (wind-CAES) power plants was developed and Iran was selected as a case study for modeling. The parameters delineated criteria for potential wind development localities for wind-CAES power plant sites. One important consequence of this research was the identification of the wind energy potential for wind-CAES sites. The theoretical wind energy potential of Iran of greater than 50 W/m2 was identified from a wind atlas of Iran. The model produced factor maps by considering the boundary conditions of the input data and created geo-databases from the outputs maps. The main factor maps were electrical grids and... 

    SPH numerical simulation of tsunami wave forces impinged on bridge superstructures

    , Article Coastal Engineering ; Volume 121 , 2017 , Pages 145-157 ; 03783839 (ISSN) Sarfaraz, M ; Pak, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This paper addresses numerically-derived tsunami wave loads on bridge superstructures using smoothed particle hydrodynamics (SPH), which is a type of mesh-free methods. Although there exist some relationships for the case of impinged loads on bridges exerted by regular (sinusoidal) waves, for the case of solitary waves such as tsunamis, no relation has yet been proposed in the literature. This shortcoming is partly due to the lack of understanding the mechanism of wave action on the bridge superstructures. In this study, three water depths, three wave amplitudes and four submergence depths of the deck are considered for the process of numerical investigation of tsunami-induced loads on... 

    Numerical simulation of free-surface waves and wave induced separation

    , Article Scientia Iranica ; Volume 15, Issue 3 , 2008 , Pages 323-331 ; 10263098 (ISSN) Sadathosseini, S. H ; Mousaviraad, S. M ; Firoozabadi, B ; Ahmadi, G ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    The present study is concerned with the numerical simulation of free-surface waves and wave induced separation in the presence of an intrusion. The results of several simulations are reported. The first study was performed for a NACA0024 surface piercing hydrofoil over a range of several Froude numbers (0.19, 0.37, 0.55), along with wave breaking at Fr = 1.0 The NACA0024 foil was of particular interest, as it almost has no separation at large depths; thus the effect of the free-surface wave and the wave induced separation could be studied. Free- surface waves and wave induced separation results were evaluated and compared with both the available experimental data and the previous numerical... 

    Elevated-temperature behaviour of LiNi0.5Co0.2Mn0.3O2 cathode modified with rGO-SiO2 composite coating

    , Article Journal of Alloys and Compounds ; Volume 843 , 2020 Razmjoo Khollari, M. A ; Khalili Azar, M ; Esmaeili, M ; Tanhaei, M ; Dolati, A ; Hosseini H, S. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An intense decrease in cycling performance and safety is a challenge for elevated temperature application of LiNi0.5Co0.2Mn0.3O2 (NCM) cathode material. In this paper, effect of two types of nano-coatings on improvement of elevated temperature performance of NCM cathode material has been investigated. One of the coatings contains SiO2 nanoparticles and the other one contains composite of reduced graphene oxide and SiO2 nanoparticles (rGO-SiO2). The coatings were fabricated by a facile wet chemical method. The SiO2 coated cathode material showed an excellent elevated temperature cycling stability, however, a decrease in discharge capacity and rate capability of this sample was observed. On... 

    Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys

    , Article Materials Characterization ; Volume 60, Issue 11 , 2009 , Pages 1370-1381 ; 10445803 (ISSN) Rajabi, M ; Vahidi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    2009
    Abstract
    The aim of this work is to study the effect of cooling rate and subsequent hot consolidation on the microstructural features and mechanical strength of Al-20Si-5Fe-2X (X = Cu, Ni and Cr) alloys. Powder and ribbons were produced by gas atomization and melt spinning processes at two different cooling rates of 1 × 105 K/s and 5 × 107 K/s. The microstructure of the products was examined using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The particles were consolidated by hot pressing at 400 °C/250 MPa/1 h under a high purity argon atmosphere and the microstructure, hardness and compressive strength of the compacts were evaluated.... 

    Microstructure and mechanical properties of Al-20Si-5Fe-2X (X = Cu, Ni, Cr) alloys produced by melt-spinning

    , Article Materials Science and Engineering A ; Volume 492, Issue 1-2 , 2008 , Pages 443-449 ; 09215093 (ISSN) Rajabi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    Al-20Si-5Fe-2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 °C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110-150 nm) and iron-containing... 

    Processing of Al-20Si-5Fe-2X(X=Cu, Ni, Cr) alloys by melt-spinning and hot-pressing

    , Article European International Powder Metallurgy Congress and Exhibition, Euro PM 2008, Mannheim, 29 September 2008 through 1 October 2008 ; Volume 2 , 2008 , Pages 99-104 ; 9781899072033 (ISBN) Rajabi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2008
    Abstract
    Al-20Si-5Fe-2X (X=Cu, Ni, Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400°C for 60 min. Optical and transmission electron microscopy (TEM), X-ray diffractometry (XRD), and hardness test were used to evaluate the microstructure and mechanical strength of the ribbons and hot consolidated specimens. The compressive strength of the specimens at ambient and elevated temperatures was also examined. The microstructure of the ribbons exhibited featureless and dendritic zones, and contains spherically-shaped Si particles with an average diameter of 20 nm. After hot-pressing, ultrafine Si (110-150 nm) and iron-containing intermetallic particles were formed. The... 

    The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet

    , Article Materials Science and Engineering A ; Volume 515, Issue 1-2 , 2009 , Pages 162-168 ; 09215093 (ISSN) Rafizadeh, E ; Mani, A ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Commercial purity copper sheets were subjected to a severe plastic deformation technique known as constrained groove pressing (CGP). The effect of pass number, intermediate and post-annealing on the yield strength, hardness and final microstructure of the copper specimens were investigated. The initial pass increases the strength much more than the subsequent passes. Intermediate and post-annealing up to 300 °C cannot change the mechanical properties significantly and even in some cases improve the strength and hardness while reduce the hardness inhomogeneity. Microstructure after post-annealing at elevated temperatures shows abnormal grain growth. © 2009 Elsevier B.V. All rights reserved  

    The tensile performance of FRP bars embedded in concrete under elevated temperatures

    , Article Construction and Building Materials ; Volume 211 , 2019 , Pages 1138-1152 ; 09500618 (ISSN) Pournamazian Najafabadi, E ; Vatani Oskouei, A ; Khaneghahi, M. H ; Shoaei, P ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this research, the mechanical properties of glass and carbon fiber reinforced polymer (FRP) bars with epoxy resin matrices embedded in concrete were investigated under an extensive range of elevated temperatures (i.e., 25–800 °C). Embedded FRP bars with various bar diameters were studied in order to determine bar diameter influence on the results. In addition, analysis of variance (ANOVA) was performed on the experimental results to investigate the contribution of exposure temperature and bar diameter to the tensile behavior of embedded in concrete FRP bars at elevated temperatures. The results show that the tensile strength of embedded FRP bars generally decreases with increasing... 

    Experimental investigation and probabilistic models for residual mechanical properties of GFRP pultruded profiles exposed to elevated temperatures

    , Article Composite Structures ; Volume 211 , 2019 , Pages 610-629 ; 02638223 (ISSN) Pournamazian Najafabad, E ; Houshmand Khaneghahi, M ; Ahmadie Amiri, H ; Esmaeilpour Estekanchi, H ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Here, we investigate the influence of elevated temperatures with negligible ambient oxygen on mechanical properties of various embedded glass fiber reinforced polymer (GFRP) profiles, as well as the application of a predictive Bayesian model for predicting these properties. Both the flexural and compressive properties of FRP profiles were investigated through the tests of I-shaped and box-shaped profiles. To determine the impact of low and high elevated temperature, the profiles were exposed to a wide range of temperatures (i.e., 25–550 °C); effects of the exposure time were also investigated. Experiments showed that specimens exposed to higher elevated temperatures for longer time periods... 

    Strength of SCLC recycle springs and fibers concrete subject to high temperatures

    , Article Structural Concrete ; 2021 ; 14644177 (ISSN) Pachideh, G ; Toufigh, V ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In this article, the self-compacting lightweight concretes (SCLC) with different fibers were prepared and exposed to elevated temperatures, and their mechanical properties were investigated. Three types of fibers were steel fibers (SF), polypropylene fibers (PPF), and metal springs with a volume fraction of 0.4%. One hundred and fifty cylindrical specimens were prepared, and the compression, tensile and flexural tests were carried out on them after exposure to high temperatures ranging from 25 to 700°C. The findings indicate that incorporation of steel fibers and springs enhanced the compressive strength of concrete by 20% compared to the control specimen. Meanwhile, the polypropylene fibers... 

    Target localization in distributed MIMO radar from time delays, doppler shifts, azimuth and elevation angles of arrival

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 1498-1503 ; 9781728115085 (ISBN) Noroozi, A ; Navebi, M. M ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we focus on the moving target localization problem in a multiple-input multiple-output radar with widely separated antennas. By exploiting jointly different types of information including time delay, Doppler shift and azimuth and elevation angles of arrival, we develop an algebraic closed-form two-stage weighted least squares solution for the problem. The proposed algorithm is shown analytically to attain the CramerRao lower bound accuracy under the small Gaussian noise assumption. Numerical simulations are included to examine the algorithm's performance and corroborate the theoretical developments  

    Al-Al3Ti nanocomposite produced in situ by two-step hot-press sintering

    , Article IOP Conference Series: Materials Science and Engineering ; Volume 40, Issue 1 , 2012 ; 17578981 (ISSN) Nikfar, B ; Ghiabakloo, H ; Hosseini, H. R. M ; Mohammadi, A. V ; Sharif University of Technology
    2012
    Abstract
    Aluminum reinforced with a large amount (up to about 55 vol.%) of Al 3Ti particles can be fabricated from Al-20Ti elemental nanometer-sized powder mixture via in-situ two step hot press sintering (TSS). For production of intermetallic reinforced in-situ composite, TSS can provide elevated temperature to facilitate the formation of intermetallic phase in situ and hot consolidation to form a fully dense solid. The first step sintering was employed at a higher temperature to obtain an initial high density, and the second step was held at a lower temperature by isothermal sintering for more time than the first one to increase bulk density without significant grain growth. The optimum TSS regime... 

    Oxidation behavior of AISI 321, AISI 316, and AISI 409 stainless steels: Kinetic, thermodynamic, and diffusion studies

    , Article Journal of Materials Research ; 2016 , Pages 1-9 ; 08842914 Movahedi Rad, A ; Pelaseyed, S.S ; Attarian, M ; Shokrallahzadeh, R ; Sharif University of Technology
    Cambridge University Press  2016
    Abstract
    The oxidation behavior of three types of stainless steels, namely AISI 321, AISI 316, and AISI 409, was compared. In all stainless steels, oxide layers were formed and their masses and thicknesses increased with oxidation time. Among them, AISI 409 ferritic stainless steel demonstrated higher oxidation rate. According to the kinetical oxidation behavior of them at elevated temperatures, the oxidation mechanism was determined. Among them, the AISI 409 ferritic stainless steel showed the lowest and AISI 321 austenitic stainless steel demonstrated the highest oxidation resistance. Based on the experimental results, it was suggested that the kinetic of oxide growth in stainless steels was... 

    Investigation of friction and wear behaviors of 2024 Al and 2024 Al/SiCp composite at elevated temperatures

    , Article Journal of Alloys and Compounds ; Volume 501, Issue 2 , Jan , 2010 , Pages 326-332 ; 09258388 (ISSN) Mousavi Abarghouie, S. M. R ; Seyed Reihani, S. M ; Sharif University of Technology
    2010
    Abstract
    Friction and wear behaviors of artificially aged 2024 Al and 2024 Al/20 vol.% SiC composite prepared by powder metallurgy method were investigated in the temperature range 20250 °C. Dry sliding wear tests were conducted at a constant sliding velocity of 0.5 m/s, an applied load of 20 N, and a sliding distance of 2500m using a pin-on-disc apparatus. Worn surfaces and wear debris were also examined by using SEM and EDS techniques. All specimens showed a transition from mild-to-severe wear above a critical temperature. In the mild wear regime, the wear rate and the friction coefficient of the composite specimen were higher than those of the unreinforced alloy. The SiC particles led to an... 

    Comparison of the effect of temperature on asphaltene destabilisation in light and heavy live oils

    , Article International Journal of Oil, Gas and Coal Technology ; Volume 16, Issue 4 , 2017 , Pages 342-362 ; 17533317 (ISSN) Mohammadi, S ; Rashidi, F ; Mousavi Dehghani, S. A ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    The main objective of this study is to investigate the effect of temperature on asphaltene destabilisation (precipitation/aggregation) in live oils at elevated pressure conditions. Here, the asphaltene related experiments were performed using solid detection systems, high pressure microscope, and high pressure-high temperature filtration apparatuses in two Iranian light and heavy live oils with different characteristics and stability. The obtained results were interpreted in terms of asphaltene onset pressure, size distribution and average diameter of the aggregates, fractal analysis of the aggregates structures, and the amount of asphaltene precipitation. As well, the results of the... 

    Effect of silicon carbide nanoparticles on hot deformation of ultrafine-grained aluminium nanocomposites prepared by hot powder extrusion process

    , Article Powder Metallurgy ; Volume 59, Issue 4 , 2016 , Pages 262-270 ; 00325899 (ISSN) Mobarhan Bonab, M. A ; Simchi, A ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    The flow behaviour of Al–SiC nanocomposites prepared by mechanical milling and hot powder extrusion methods was studied at different temperatures (350–500°C) and strain rates (0.005–0.5 s−1). The flow of the Powder metallurgy nanocomposites exhibited a peak stress followed by a dynamic flow softening behaviour. It was shown that mechanical milling increased high-temperature strain rate sensitivity of ultrafine-grained (UFG) aluminium while decreasing its flow dependence to temperature. Constitutive analysis of the hot deformation process by Zener–Hollomon parameter (Z) also indicated a remarkable increase in the deformation activation energy (about 40%). Likewise, SiC nanoparticles (up to... 

    The effect of different rare earth elements content on microstructure, mechanical and wear behavior of Mg-Al-Zn alloy

    , Article Materials Science and Engineering A ; Volume 527, Issue 7-8 , 2010 , Pages 2027-2035 ; 09215093 (ISSN) Meshinchi Asl, K ; Masoudi, A ; Khomamizadeh, F ; Sharif University of Technology
    2010
    Abstract
    The effect of Rare earths addition to AZ91 magnesium alloy and its influence on the microstructure and mechanical properties was investigated in this study. Addition of cerium rich misch metal to AZ91 alloy resulted in formation of needle shape particles, which had a very high thermal stability, providing superior mechanical properties compared to AZ91 magnesium alloy. As a result, the grain boundaries were less susceptible for grain boundary sliding at high temperatures. The steady state creep rates were specified and for the AZ91 alloy and the results indicate a mixed mode of creep behavior, with some grain boundary effects contributing to the overall behavior. However for the RE added... 

    The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg-Al alloys

    , Article Materials Science and Engineering A ; Volume 523, Issue 1-2 , 2009 , Pages 1-6 ; 09215093 (ISSN) Meshinchi Asl, K ; Tari, A ; Khomamizadeh, F ; Sharif University of Technology
    2009
    Abstract
    The effect of Al content and Si addition on the microstructural and creep properties of Mg-Al-RE alloys was investigated in this study. The steady state creep rates were specified and it was found that the creep behavior of the alloy, which is dependent on the stability of the near grain boundary microstructure, was improved by the RE and Si addition. For the AZ91 alloy, the results indicate a mixed mode of creep behavior, with some grain boundary effects contributing to the overall behavior. However for the RE and Si added samples, sliding of grain boundaries was greatly suppressed and the dislocation climb controlled creep was the dominant deformation mechanism. Analysis of creep rates...