Loading...
Search for: energy-dispersive-x-ray-spectroscopy
0.007 seconds

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4-nitrophenol: studies of kinetics and mechanism

    , Article Applied Organometallic Chemistry ; Volume 31, Issue 11 , 2017 ; 02682605 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Abstract
    AgxPt100−x (x = 0, 25, 50, 75 and 100) nanoparticles were grown on the surface of magnetic graphene oxide nanosheets (Fe3O4@GO) for the first time. The as-prepared nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, vibrating sample magnetometry and thermogravimetric analysis. The Fe3O4@GO-AgxPt100−x catalysts were applied in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol using sodium borohydride (NaBH4). The synthesized nanocomposites... 

    An imprinted interpenetrating polymer network for microextraction in packed syringe of carbamazepine

    , Article Journal of Chromatography A ; Volume 1491 , 2017 , Pages 1-8 ; 00219673 (ISSN) Asgari, S ; Bagheri, H ; Es haghi, A ; Amini Tabrizi, R ; Sharif University of Technology
    Abstract
    An imprinted interpenetrating polymer network (IPN) was synthesized and used as a medium for isolation of carbamazepine from urine samples. The polymer network consisted of a homogeneous polystyrene–sol gel hybrid constructed by in–situ radical polymerization method. In this process, within the sol–gel reaction duration, styrene monomer could penetrate into the reaction mixture and after the polymerization initiation, a monolithic IPN structure was prepared. The scanning electron microscopy (SEM) image and energy dispersive spectroscopy (EDX) are indications of the polystyrene dispersion at nano- to micro-meter level in the sol gel matrix. Eventually, the synthesized IPN was used as a... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation

    , Article Electrochimica Acta ; Volume 259 , 2018 , Pages 36-47 ; 00134686 (ISSN) Shahrokhian, S ; Rezaee, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The present study reports a simple electrochemical approach to the fabrication of a new nanocomposite containing PtPd nanoflowers (NFs) promoted with two-dimensional (2D) nanosheets (NSs) structure cuprous oxide (Cu2O) supported on reduced graphene oxide (rGO) (PtPd-NFs/Cu2O-NSs/rGO). Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, and energy dispersive X-ray spectroscopy are used for characterization of the PtPd-NPs/Cu2O-NPs/rGO. SEM images showed that vertical-standing arrays of Cu2O with an edge length up to 1 μm and thickness of about 20 nm are electrodeposited on the surface of rGO film. Also, PtPd needle-like NFs with visible and... 

    A novel high performance nano chemosensor for copper (II) ion based on an ultrasound-assisted synthesized diphenylamine-based schiff base: design, fabrication and density functional theory calculations

    , Article Ultrasonics Sonochemistry ; Volume 41 , 2018 , Pages 337-349 ; 13504177 (ISSN) Parsaee, Z ; Haratipour, P ; Janghorban Lariche, M ; Vojood, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A novel high selective colorimetric chemosensor was introduced based on a nano diphenyl-based Schiff base (H2L), 2,2′-((1E,1′E)-(((hexylazanediyl)bis(4,1-phenylene))bis(methanylylidene))bis(azanylylidene))bis(4-methylphenol) that synthesized using sonochemical method. H2L was characterized by FT-IR, MS, TGA, 1H NMR, 13C NMR, SEM and elemental analysis techniques, then fabricated as the portable strips for sensing copper (II) ions in aqueous media. The binding interaction between H2L and various metal ions was investigated by UV–Vis spectroscopic that showed favorable coordination toward Cu2+ ion. H2L exhibited binding-induced color changes from yellow to pink and practically no interference... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 4 , 2018 , Pages 2256-2267 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Welding of Al-Mg aluminum alloy to aluminum clad steel sheet using pulsed gas tungsten arc process

    , Article Journal of Manufacturing Processes ; Volume 31 , 2018 , Pages 494-501 ; 15266125 (ISSN) Hasanniah, A ; Movahedi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Al-Mg aluminum alloy was lap joined to aluminum clad steel sheet using pulsed gas tungsten arc welding process and Al-Si filler metal. The effects of the welding heat-input were investigated on the joint microstructure and mechanical properties. Weld metal microstructure, formation of intermetallic compounds (IMCs) at the joint interface and the fracture locations were studied using stereo, optical and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). The joint strength of the welds was evaluated by shear-tensile test. The results showed that presence of a thin aluminum clad layer with 350 μm thickness drastically decreased the Al-Fe intermetallic... 

    Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite

    , Article Journal of Electroanalytical Chemistry ; Volume 808 , 2018 , Pages 114-123 ; 15726657 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Herein, a novel sensing platform based on NiCo layered double hydroxide (LDH) nanosheets/graphene nanoribbons (GNRs) modified glassy carbon electrode is presented for sensitive non-enzymetic determination of glucose. In the first step, nanoflower-like NiCo LDH nanosheets were grown on the surface of ZIF-67 dodecahedron nanocrystals which used as sacrificial template and were further characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and FTIR. In the next step, in order to fabricate a mechanically stable modified electrode, the as-prepared nanosheets were mixed with... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 4 , 2018 , Pages 983-996 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Micro structural features and mechanical properties of Al-Al3Ti composite fabricated by in-situ powder metallurgy route

    , Article Journal of Alloys and Compounds ; Volume 473, Issue 1-2 , 2009 , Pages 127-132 ; 09258388 (ISSN) Abbasi Chianeh, V ; Madaah Hosseini, H. R ; Nofar, M ; Sharif University of Technology
    2009
    Abstract
    In this paper, an in-situ powder metallurgy technique of fabricating near net shape particulate Al3Ti-Al composite is developed. Titanium tri-aluminide particles were generated in aluminum matrix by solid state reactive diffusion of homogenous blended pure Ti and Al powders. Effects of titanium particle size, temperature and time of sintering on microstructure and mechanical properties of the composite were studied by X-ray diffraction analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy and tensile testing. After 5 h sintering at 600 °C, Al3Ti intermetallic particles were formed as the major second phase. By decreasing the titanium particle size or increasing the... 

    Morphology and hydrogen sensing studies of the electrodeposited nanostructure palladium on porous silicon

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 892-901 ; 14757435 (ISSN) Astaraie, F. R ; Iraji zad, A ; Taghavi, N. S ; Abbaszadeh, D ; Dolati, A ; Mahshid, S. S ; Sharif University of Technology
    2009
    Abstract
    We have investigated hydrogen sensing properties of electrodeposited Pd clusters on macroporous silicon substrates. Porous layer was prepared by electrochemical etching of p-type silicon (100) wafer in organic electrolyte DMF (dimethylformamide) diluted by HF (%95 Vol. %). The deposition of Pd was carried out by linear voltammetry (LV) technique. This technique was taken for reduction of palladium ions in the potential range from 0.4 V to -1 V vs. SCE, at the scan rate of 20 mV s-1. Some samples were annealed at 300°C for an hour in air to study the effect of heat treatment on their gas sensitivity. Surface structural and chemical properties of the samples were characterised using Scanning... 

    Appraising the impacts of SiO2, ZnO and TiO2 nanoparticles on rheological properties and shale inhibition of water-based drilling muds

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 581 , 2019 ; 09277757 (ISSN) Esfandyari Bayat, A ; Shams, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In recent decades, utilizing of water-based muds (WBMs) in drilling oil and gas wells is ever increasing comparing to oil-based muds and synthetic-based muds due to the lower environmental issues. However, the main drawbacks with WBMs are rheological properties inefficiency and shale swelling which have caused attentions turn to improvement of WBMs’ rheological properties. In this study, the effects of various nanoparticles (NPs) namely titanium dioxide (TiO2), silicon dioxide (SiO2), and zinc oxide (ZnO) on improving rheological properties and shale recovery rate of a WBM sample at two temperatures (25 and 50 °C) were investigated. The concentrations of NPs in the base mud were set at 0.01,... 

    Toward higher extraction and enrichment factors via a double-reservoirs microfluidic device as a micro-extractive platform

    , Article Journal of Separation Science ; Volume 42, Issue 18 , 2019 , Pages 2985-2992 ; 16159306 (ISSN) Rezvani, O ; Baraazandeh, M ; Bagheri, H ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    In this study, firstly, a double-reservoir and switchable prototype of a micro-chip along with the respective holders were fabricated. A cyclic desorption process using microliter volume of organic solvent was adopted to prevent any outdoor contamination. As extractive phases, two identical sheets of electrospun polyamide/polypyrrole/titania nanofibers were synthesized using core–shell electro-spinning technique and utilized for determination of memantine in plasma samples. Field emission scanning electron microscopy images showed a high degree of porosity and homogeneity throughout the sheet structure. Also, energy dispersive X-ray analysis confirmed the presence of titania, while the... 

    Laser irradiation for controlling size of TiO2-Zeolite nanocomposite in removal of 2,4-dichlorophenoxyacetic acid herbicide

    , Article Water Science and Technology ; Volume 80, Issue 5 , 2019 , Pages 864-873 ; 02731223 (ISSN) Abdollah, F ; Borghei, S. M ; Moniri, E ; Kimiagar, S ; Panahi, H. A ; Sharif University of Technology
    IWA Publishing  2019
    Abstract
    This study focused on the synthesis of TiO2-Zeolite nanocomposite through a sol-gel approach. The decrease in the size of the nanocomposite is considered a primary parameter to improve photocatalytic activity. In this regard, fabricated samples were exposed to laser irradiation (532 nm) for four different time intervals in order to investigate the size variation of the nanocomposite. FTIR, UV-Vis, XRD, DLS, SEM and EDX analyses were applied to characterize and determine the size of the products. An optimized nanocomposite sample, in term of the particle size, was used for photodegradation of 2,4-D herbicide from aqueous solution. Photodegradation was carried out under UV irradiation (12 W)... 

    Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine

    , Article Journal of Environmental Management ; Volume 233 , 2019 , Pages 660-672 ; 03014797 (ISSN) Mahmoodi, N. M ; Abdi, J ; Taghizadeh, M ; Taghizadeh, A ; Hayati, B ; Shekarchi, A. A ; Vossoughi, M ; Sharif University of Technology
    Academic Press  2019
    Abstract
    Herein, Kiwi peel activated carbon (AC), Materials Institute Lavoisier (MIL-88B (Fe), and AC/MIL-88B (Fe) composite were synthesized and used as catalysts to degrade Reactive Red 198. The material properties were analyzed by the FTIR, BET-BJH, XRD, FESEM, EDX, TGA, and UV–Vis/DRS. The BET surface area of AC, MIL-88B (Fe) and AC/MIL-88B (Fe) was 1113.3, 150.7, and 199.4 m2/g, respectively. The band gap values (Eg) estimated by Tauc plot method, were obtained 5.06, 4.19 and 3.79 eV for AC, MIL-88B (Fe) and AC/MIL-88B (Fe), respectively. The results indicated that the AC/MIL-88B (Fe) composite had higher photocatalytic activity (99%) than that of pure AC (79%) and MIL-88B (Fe) catalysts (87%).... 

    In situ two-step preparation of 3D NiCo-BTC MOFs on a glassy carbon electrode and a graphitic screen printed electrode as nonenzymatic glucose-sensing platforms

    , Article ACS Sustainable Chemistry and Engineering ; Volume 8, Issue 38 , 2020 , Pages 14340-14352 Ezzati, M ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    In the present study, a rational two-step strategy is employed for the green, fast, very simple, and highly controllable synthesis of the bimetallic nickel-cobalt-based metal-organic frameworks (MOFs) on glassy carbon substrates by in situ transformation of nickel-cobalt-layered double hydroxide nanosheet (NiCo-LDHs NSs) intermediates into nickel-cobalt-benzene tricarboxylic acid MOFs (E-NiCo-BTC MOFs). The structural characteristics of the electrode materials in each step were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, elemental mapping, field emission scanning electron microscopy, and transmittance electron microscopy.... 

    Ag-doped magnetic metal organic framework as a novel nanostructured material for highly efficient antibacterial activity

    , Article Environmental Research ; Volume 188 , 2020 Rahmati, Z ; Abdi, J ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    In the last decades, numerous attempts have been made to prevent microbial pollution spreading, using antibacterial agents. Zeolitic imidazolate framework-8 (ZIF-8) belongs to a subgroup of metal organic frameworks (MOFs) merits of attention due to the zinc ion clusters and its effective antibacterial activity. In this work, Ag-doped magnetic microporous γ-Fe2O3@SiO2@ZIF-8-Ag (FSZ-Ag) was successfully synthesized by a facile methodology in room temperature and used as an antibacterial agent against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Several characterization methods were applied to analyze the properties of the materials, and the... 

    Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates

    , Article Talanta ; Volume 210 , 2020 Shahrokhian, S ; Ezzati, M ; Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, for the first time, we reported a fast and facile three-step in situ strategy for direct controllable growth of the Co3(BTC)2 MOFs thin films on the GCE, through the rapid conversion of the electrodeposited Co(OH)2 nano-flakes on rGO/GCE, to crystalline rectangular bar-shape structures of MOFs. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and elemental mapping analysis used to the structural and morphological characterization of the well-synthesized MOFs. The as-prepared Co3(BTC)2 MOFs were used to construct a non-enzymatic sensing platform for determining the glucose... 

    Mesoporous nanostructures of NiCo-LDH/ZnCo2O4 as an efficient electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 604 , 2021 , Pages 832-843 ; 00219797 (ISSN) Shamloofard, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Increasing energy demands for pollution-free and renewable energy technologies have stimulated intense research on the development of inexpensive, highly efficient, and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this study, a superior OER performance was achieved using a tri-metallic (Zn, Co, Ni) high-performance electrocatalyst. We successfully fabricated a peony-flower-like hierarchical ZnCo2O4 through an additive-free hydrothermal reaction followed by heat treatment. Then NiCo-LDH (layered double hydroxides) nano-flakes was electrodeposited on the ZnCo2O4/GCE surface to prepare NiCo-LDH/ZnCo2O4/GCE which was used as electrode for OER. The structure and...