Loading...
Search for: ethylene-glycol
0.011 seconds

    Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow

    , Article Experimental Thermal and Fluid Science ; Volume 35, Issue 3 , April , 2011 , Pages 495-502 ; 08941777 (ISSN) Zamzamian, A ; Oskouie, S. N ; Doosthoseini, A ; Joneidi, A ; Pazouki, M ; Sharif University of Technology
    2011
    Abstract
    Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical... 

    Morphology transition control of polyaniline from nanotubes to nanospheres in a soft template method

    , Article Polymer International ; Volume 64, Issue 1 , June , 2015 , Pages 88-95 ; 09598103 (ISSN) Pirhady Tavandashti, N ; Ghorbani, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    A soft template route is reported for the fabrication of polyaniline nanospheres via the oxidative polymerization of aniline in the presence of β-naphthalenesulfonic acid (β-NSA) as both surfactqant and dopant, and ammonium persulfate as oxidant at 2-5°C. Control over the morphology and size of the nanoparticles was achieved by changing the reaction medium via addition of an organic cosolvent (i.e. ethanol or ethylene glycol) and by controlling the concentrations of aniline and β-NSA and the molar ratio of β-NSA to aniline. By this means the size of the β-NSA-aniline micelles and the way that aniline monomer interacts with the micelles were controlled. In fact the lower dielectric constant... 

    Partitioning of l-lysine monohydrochloride in aqueous two-phase systems of poly(ethylene glycol) and dipotassium hydrogen phosphate or trisodium citrate 5-hydrate

    , Article Journal of Chemical and Engineering Data ; Volume 55, Issue 9 , 2010 , Pages 3005-3009 ; 00219568 (ISSN) Mirsiaghi, M ; Pazuki, G ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    2010
    Abstract
    The partition constants of l-lysine HCl were measured in polymer-salt aqueous two-phase systems. These systems contain poly(ethylene glycol) with a nominal molecular weight of 4000 or 10000 and two different salts (dipotassium hydrogen phosphate or trisodium citrate 5-hydrate). The experimental data were obtained at temperatures of (293.15, 298.15, and 303.15) K. The effects of temperature, pH, polymer and salt concentrations, polymer molecular weight, and salt type on the partitioning of l-lysine HCl were also studied. The results showed that salt concentration has a significant effect on the partition constant while temperature has less effect. The Diamond and Hsu model was used to... 

    Synthesis and characterization of nanocrystalline barium strontium titanate

    , Article Materials Science- Poland ; Volume 28, Issue 2 , 2010 , Pages 421-426 ; 01371339 (ISSN) Golmohammad, M ; Nemati, Z. A ; Faghihi Sani, M. A ; Sharif University of Technology
    2010
    Abstract
    Barium strontium titanate (BST) was prepared via the simple sol-gel method by using tetrabutyl ti-tanate, ethanol, citric acid and ethylene glycol as starting materials. Thermogravimetry and differential thermal analysis were used to examine the behaviour of the xerogel. The particle size of BST was approximately 21 nm, as calculated by the X-ray diffraction and confirmed by transition electron microscopy for the calcination temperature of 750 °C. It was found that the particles of BST powders calcined at 750 °C were smaller and more homogeneous and uniform than those obtained at 800 °C  

    The effects of reaction conditions on block copolymerization of chitosan and poly(ethylene glycol)

    , Article Carbohydrate Polymers ; Volume 81, Issue 4 , July , 2010 , Pages 799-804 ; 01448617 (ISSN) Ganji, F ; Abdekhodaie, M. J ; Sharif University of Technology
    2010
    Abstract
    A novel injectable in situ gelling thermosensitive chitosan-block-poly(ethylene glycol) formulation was synthesized for drug delivery applications. Block copolymerization of monomethoxy-poly(ethylene glycol) onto chitosan using potassium persulfate as an initiator was carried under a nitrogen atmosphere in aqueous solution. The effects of potassium persulfate and poly(ethylene glycol) concentrations, reaction time and reaction temperature on block polymerization were studied by determining the yield of reaction (%Y), polymerization efficiency (%E) and add-on percentage (%Add-on). Keeping the other conditions constant, the optimum reaction conditions were found to be initiator = 0.01 M,... 

    Measurement of partition coefficients of β-amylase and amyloglucosidase enzymes in aqueous two-phase systems containing poly(ethylene glycol) and Na2SO4/KH2PO4 at different temperatures

    , Article Fluid Phase Equilibria ; Volume 292, Issue 1-2 , May , 2010 , Pages 80-86 ; 03783812 (ISSN) Shahriari, Sh ; Taghikhani, V ; Vossoughi, M ; Safe kordi, A. A ; Alemzadeh, I ; Pazuki, G. R ; Sharif University of Technology
    2010
    Abstract
    In this research, partitioning of β-amylase and amyloglucosidase was investigated in polymer-salt aqueous two-phase systems containing poly(ethylene glycol) (PEG) with different molecular weights such as 4000, 6000 and 10,000 and Na2SO4 or KH2PO4. The experimental partition coefficients were measured at T = (298.5, 301.5, 303.5, 305.5 and 308) K. The results showed that the concentration of salt in feed had more effect on partition coefficients of β-amylase and amyloglucosidase in aqueous two-phase systems than the concentration of polymer in initial feed. Also, the results indicated that temperature had a small effect on partitioning of β-amylase and amyloglucosidase enzymes. The partition... 

    Synthesis of gold nanoparticle necklaces using linear-dendritic copolymers

    , Article European Polymer Journal ; Volume 46, Issue 2 , 2010 , Pages 165-170 ; 00143057 (ISSN) Tavakoli Naeini, A ; Adeli, M ; Vossoughi, M ; Sharif University of Technology
    2010
    Abstract
    Linear-dendritic copolymers containing hyperbranched poly(citric acid) and linear poly(ethylene glycol) blocks (PCA-PEG-PCA) were used as reducing and capping agents to synthesize and support gold nanoparticles (AuNPs). PCA-PEG-PCA copolymers with 1758, 1889 and 3446 molecular weights, called A1, A2 and A3 through this work, respectively, were synthesized using 2, 5, and 10 citric acid/PEG molar ratios. The diameter of A1, A2 and A3 in a fresh water solution was investigated using dynamic light scattering (DLS) and it was between 1.8 and 2.8 nm. AuNPs were simply synthesized and supported by addition a boiling aqueous solution of HAuCl4 to aqueous solutions of A1, A2 and A3. Supported AuNPs... 

    Partitioning of penicillin G acylase in aqueous two-phase systems of poly(ethylene glycol) 20000 or 35000 and potassium dihydrogen phosphate or sodium citrate

    , Article Journal of Chemical and Engineering Data ; Volume 55, Issue 1 , 2010 , Pages 243-248 ; 00219568 (ISSN) Pazuki, G ; Vossoughi, M ; Taghikhani, V ; Sharif University of Technology
    Abstract
    The partitioning of penicillin G acylase in aqueous two-phase systems (ATPS's) containing poly(ethylene glycol) (PEG) 20000 or 35000 and potassium dihydrogen phosphate (KH2PO4) or sodium citrate (C 6H5Na3O7 ·5H2O) has been measured at three temperatures, (301.2, 307.2, and 310.2) K. The effects of temperature, polymer molecular weight, and polymer and salt concentrations on the partitioning of penicillin G in the ATPS were studied. The experimental data showed that the composition of salt has a large effect on partitioning of penicillin G in ATPS, and the temperature of the system has a small effect on the partitioning. The UNIFAC-FV group contribution model (Pazuki et al., Ind. Eng. Chem.... 

    Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    , Article Materials Science and Engineering C ; Volume 62 , 2016 , Pages 626-633 ; 09284931 (ISSN) Esfandyari Manesh, M ; Darvishi, B ; Azizi Ishkuh, F ; Shahmoradi, E ; Mohammadi, A ; Javanbakht, M ; Dinarvand, R ; Atyabi, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a... 

    High-performance carboxylate superplasticizers for concretes: Interplay between the polymerization temperature and properties

    , Article Journal of Applied Polymer Science ; Volume 134, Issue 23 , 2017 ; 00218995 (ISSN) Tajbakhshian, A ; Saeb, M. R ; Jafari, S. H ; Najafi, F ; Khonakdar, H. A ; Ayoubi, M ; Hassanpour Asl, F ; Sharif University of Technology
    Abstract
    Polycarboxylate superplasticizers based on acrylic acid (AA) and maleic anhydride (MAn) were synthesized via free-radical copolymerization with an ethylene glycol monomer and characterized. The copolymerization temperature (ranging from 50 to 90 °C) appeared to be the key operating factor governing the chemical structure of the superplasticizers. The chemical structures of the products were analyzed by gel permeation chromatography, whereas an optimized sample was further analyzed by Fourier transform infrared spectroscopy and 1H-NMR. Superplasticizers of the AA and MAn classes were then incorporated into concrete, and their performances were measured by slump and slump loss tests, where a... 

    Specific picomolar detection of a breast cancer biomarker her-2/neu protein in serum: electrocatalytically amplified electroanalysis by the aptamer/peg-modified electrode

    , Article ChemElectroChem ; Volume 4, Issue 4 , 2017 , Pages 872-879 ; 21960216 (ISSN) Salimian, R ; Kékedy Nagy, L ; Ferapontova, E. E ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    Abstract
    Specific and sensitive electroanalysis of blood-circulating protein cancer biomarkers is often complicated by interference from serum proteins nonspecifically adsorbing at the biosensing interface and masking specific reactions of interest. Here, we have developed an electrocatalytically amplified assay for specific and sensitive analysis of human epidermal growth factor receptor-2 (HER-2/neu, a protein cancer biomarker over-expressed in breast cancers) that allows us to avoid both the interference from bovine serum albumin (BSA) and electrocatalytic amplification of the signal stemming from the specific aptamer−HER-2/neu binding. A HER-2/neu-specific thiolated aptamer sequence was... 

    Porous gelatin/poly(ethylene glycol) scaffolds for skin cells

    , Article Soft Materials ; Volume 15, Issue 1 , 2017 , Pages 95-102 ; 1539445X (ISSN) Vahidi, M ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Abstract
    Biocompatible porous polymeric scaffolds provide a suitable environment for proliferation of stem cells in human body. In this research work, porous gelatin–poly(ethylene glycol), PEG, based scaffolds were prepared using combination of freeze-gelation and freeze-extraction methods. Effects of various parameters such as freezing temperature, cross-linking agent, concentrations of gelatin and PEG and their blending ratio on physical and mechanical properties, swelling ratio, porosity, pore size, and degradation rate of scaffolds were investigated. Also, proliferation of fibroblast skin cells on the scaffolds was examined by MTS assay to assess the suitability of the scaffolds in wound healing... 

    Improved H2 production from the APR of polyols in a microreactor utilizing Pt supported on a CeO2–Al2O3 structured catalyst

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 48 , 2018 , Pages 21777-21790 ; 03603199 (ISSN) Entezary, B ; Kazemeini, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this research, the activity and selectivity of a platinum-based catalyst for H2 production through aqueous phase reforming (APR) in a fixed-bed reactor (FBR) as well as, a structured catalyst microreactor (MR) were investigated. In this venue, first, an in-house designed MR was fabricated and the catalytic material was deposited on the channel walls of this steel made reactor. After verification of the stability of the coated layer, the prepared reactor was employed to investigate the APR reaction. In this regard, APR of the ethylene glycol and glycerol over Pt/Al2O3 and Pt/CeO2–Al2O3 catalyst were conducted in an MR and FBR. Obtained results demonstrated that employing Pt/CeO2–Al2O3 as a... 

    Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 91 , 2018 , Pages 383-395 ; 18761070 (ISSN) Ahmadi, M. A ; Ahmadi, M. H ; Fahim Alavi, M ; Nazemzadegan, M. R ; Ghasempour, R ; Shamshirband, S ; Sharif University of Technology
    Abstract
    Thermal conductivity of nanofluids plays key rol in heat transfer capacity of fluids. adding nanoparticles to a base fluid can lead to enhancement in thermal conductivty ratio. CuO/Ethyle Glycol (EG) is one of the most applicable nanofluids for heat transfer purposes. In the present study, thermal conductivty ratio of CuO/EG nanofluid is modeled by applying Group Method of Data Hnadling and Least Square Support Vector Machine – Gentic Algorithm approaches. Results indicated that the utilized model are very accurate in predicting thermal conductivty ratio of the nanofluid. The R-squared values for the proposed model are equal to 0.994 and 0.991 by applying Group Method of Data Handling and... 

    Study of phase behaviour for the aqueous two-phase polymer - polymer systems using the modified UNIQUAC-NRF model

    , Article Physics and Chemistry of Liquids ; Volume 47, Issue 2 , 2009 , Pages 148-159 ; 00319104 (ISSN) Pazuki, G. R ; Taghikhani, V ; Ghotbi, C ; Vossoughi, M ; Radfarnia, H. R ; Sharif University of Technology
    2009
    Abstract
    A modified form of the UNIQUAC-NRF activity coefficient model was used to study the phase behaviour of the aqueous two-phase systems (ATPSs) of polyethylene glycol (PEG) and dextran (DEX) with different molecular weights at various temperatures. In the proposed model, a ternary interaction parameter was added to the expression for the excess Gibbs free energy and, in turn, to the corresponding activity coefficient rendered by the UNIQUAC-NRF model. The combinatorial part of the new model takes the same form as that of the original UNIQUAC model and the residual part considers the nonrandomness and also the binary and the ternary interactions among the molecules in mixtures of PEG, DEX, and... 

    Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 19 , 2009 , Pages 8124-8131 ; 19327447 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Hafeli, U. O ; Sharif University of Technology
    2009
    Abstract
    Superparamagnetic iron oxide nanoparticles with proper surface coatings are increasingly being evaluated for clinical applications such as hyperthermia, drug delivery, magnetic resonance imaging, transfection, and cell/protein separation. To enhance the applicability of magnetic nanoparticles, two main problems must be overcome. First, as the drug coats the particle surface, a significant portion of it is quickly released upon injection (burst effect). Therefore, only small amounts of the drug reach the specific site after, for example, magnetic drug targeting. Second, once the surface-derivatized nanoparticles are inside the cells, the coating is likely digested, leaving the bare particles... 

    In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays

    , Article Journal of the Australian Ceramic Society ; Volume 55, Issue 1 , 2019 , Pages 187-200 ; 25101560 (ISSN) Sarraf, M ; Sukiman, N. L ; Bushroa, A. R ; Nasiri Tabrizi, B ; Dabbagh, A ; Abu Kasim, N. H ; Basirun, W. J ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO 2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min −1 . From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C.... 

    Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 546 , 2020 Ahmadi, M. H ; Ghazvini, M ; Maddah, H ; Kahani, M ; Pourfarhang, S ; Pourfarhang, A ; Zeinali Herisg, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this investigation, neural networks were used to predict pressure drop of CuO-based nanofluid in a car radiator. For this purpose, the neural network with the multilayer perceptron structure was used to formulate a model for estimating the pressure drop In this way, different concentrations of copper oxide-based nanofluid were prepared. The base fluid was the mixture of ethylene glycol and pure water (60:40 wt%) which usually used as the cooling fluid in automotive industries. The prepared nanofluid samples were used in a car radiator and the pressure drop of nanofluid flows in the system at different Reynolds were measured. The main purpose of this study was developing the optimized... 

    The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144 , February , 2020 , 167–178 Jafari, M ; Farajollahi, A ; Gazori, H ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    In the present study, a new swirling flow generator is studied which aims to enhance the convective heat transfer rate in a heat exchanger tube. This device has a four-point star cross section. The study mainly investigates the effect of swirl generator on heat transfer rate and pressure drop along the test tube which is under a constant and uniform heat flux. The working fluid in the experiments is the water–ethylene glycol mixtures with Prandtl numbers ranging from 5 to 150 at different Reynolds numbers from 12,000 to 27,000. The results clarify the potential of the applied swirl generator to make a significant enhancement in the heat transfer rate with a satisfactory rise in the pressure... 

    Application of M5 tree regression, MARS, and artificial neural network methods to predict the Nusselt number and output temperature of CuO based nanofluid flows in a car radiator

    , Article International Communications in Heat and Mass Transfer ; Volume 116 , July , 2020 Kahani, M ; Ghazvini, M ; Mohseni Gharyehsafa, B ; Ahmadi, M. H ; Pourfarhang, A ; Shokrgozar, M ; Zeinali Heris, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the current study, CuO nanoparticles were dispersed in a mixture of Ethylene Glycol-Water (60/40 wt. %) to prepare stable nanofluid in different concentrations (0.05 − 0.8 vol. %). The samples were used as the coolant fluid in a specific car radiator to evaluate the thermal performance of nanofluid and base fluid in the system. Five different and novel Machine-learning methods were applied over experimental data to predict the Nusselt number and output temperature of the coolant in the system. These methods are M5 tree regression, Linear and Cubic Multi-Variate Adaptive Regression Splines (MARS), Radial Basis Function (RBF), and Artificial Neural Network-Levenberg Marquardt Algorithm...