Loading...
Search for: fingers
0.015 seconds
Total 38 records

    Convective-Reactive Transport and Unstable Density-Driven Flow in Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Shafabakhsh, Paiman (Author) ; Ataie-Ashtiani, Behzad (Supervisor)
    Abstract
    The goal of this study is to explore the density-driven flow and study the effect of fracture as well as chemical processes and reactions on convective transport. Convective flow is used in connection with the density-driven flow where the flow is driven by density differences in the fluid, which can be affected by the ambient rocks. Several studies of density-driven flow in porous media have focused on the effect of heterogeneity on the mixing convection; however, they neglect the key processes of geochemical reactions in fractured porous media. This study aims to address this gap by investigating the combined effect of heterogeneity (as fractures) and the existing geochemical reactions on... 

    An experimental study of the matrix-fracture interaction during miscible displacement in fractured porous media: A micromodel study

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 3 , Oct , 2010 , p. 259-266 ; ISSN: 15567036 Saidian, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Mohammadi, S ; Sharif University of Technology
    Abstract
    During miscible displacements in fractured porous media, one of the most important factors that plays a significant role in oil production is the matrix-fracture interaction. In this work, a series of hydrocarbon injection experiments have been performed on a fractured glass micromodel that was designed specifically to study matrix-fracture interaction. A high quality image analysis method was used to determine the fluid flow behavior, solvent front movement, and viscous fingering associated with solvent movement in matrix and fractures. Observations showed that in the case of unit viscosity ratio, the injection rate increased the slope of recovery curve and consequently improved the final... 

    Monitoring the role of fracture geometrical characteristics on fingering initiation/development during heavy oil miscible displacements in fractured porous media

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 35, issue. 12 , Aug , 2010 , p. 1129-1139 ; ISSN: 15567036 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Finger initiation/development at fluid-fluid interface during miscible floods can cause poor displacement efficiency, which is undesirable in enhanced oil recovery processes. In this work, a series of hydrocarbon injection experiments performed on 5-spot glass micromodels that were initially saturated with the heavy crude oil. The fractured micromodels with different fracture geometrical characteristics were used in the tests. High quality image analysis was applied to determine the fluid flow behavior, solvent front movement, and viscous fingering associated with solvent movement in matrix and fractures. Observations showed that higher solvent dispersion in the fractures rather than matrix... 

    Monitoring the role of fracture geometrical characteristics on fingering initiation/development during heavy oil miscible displacements in fractured porous media

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 35, Issue 12 , Aug , 2013 , Pages 1129-1139 ; 15567036 (ISSN) Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    2013
    Abstract
    Finger initiation/development at fluid-fluid interface during miscible floods can cause poor displacement efficiency, which is undesirable in enhanced oil recovery processes. In this work, a series of hydrocarbon injection experiments performed on 5-spot glass micromodels that were initially saturated with the heavy crude oil. The fractured micromodels with different fracture geometrical characteristics were used in the tests. High quality image analysis was applied to determine the fluid flow behavior, solvent front movement, and viscous fingering associated with solvent movement in matrix and fractures. Observations showed that higher solvent dispersion in the fractures rather than matrix... 

    A comparative study on WAS, SWAS, and solvent-soak scenarios applied to heavy-oil reservoirs using five-spot glass micromodels

    , Article Journal of Canadian Petroleum Technology ; Volume 51, Issue 5 , 2012 , Pages 383-392 ; 00219487 (ISSN) Farzaneh, S. A ; Dehghan, A. A ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    In this work, a series of solvent- and water-injection scenarios were conducted on horizontal five-spot glass micromodels that were saturated initially with heavy oil. Sandstone and limestone rock look-alike and network patterns with different pore structures were used in the experiments. The results show that the ultimate oil recovery of a water-alternating-solvent (WAS) scheme was greater than that of a simultaneously water-alternating-solvent (SWAS) scheme, and the efficiency of a solvent-soak scheme also offers a greater recovery. Likewise, the WAS scheme resulted in greater oil recovery when compared with continuous solvent injection (CSI), with the same amount of solvent consumption.... 

    Characterization of viscous fingering during displacements of low tension natural surfactant in fractured multi-layered heavy oil systems

    , Article Chemical Engineering Research and Design ; Volume 96 , 2015 , Pages 23-34 ; 02638762 (ISSN) Arabloo, M ; Shokrollahi, A ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Institution of Chemical Engineers  2015
    Abstract
    Characterization of viscous fingering in low tension displacements especially for heavy oil surfactant pair in heterogeneous systems is neither straight forward nor well understood. In this work layered porous models containing fractures with different geometrical properties were used and the finger behavior during displacement of LTNS, as a new EOR agent, in heavy oil was quantified. Dynamic propagation of the fingers independent to the type of heterogeneity is well correlated with the dimensionless displacement time in a linearly form. And also, the rate of finger growth is nearly independent to the type of medium heterogeneity. When injection is scheduled through high permeable region in... 

    Effect of dyslipidemia on a simple morphological feature extracted from photoplethysmography flow mediated dilation

    , Article International Conference in Electronic Engineering and Computing Technology, London, 1 July 2009 through 3 July 2009 ; Volume 60 LNEE , 2010 , Pages 551-561 ; 18761100 (ISSN) ; 9789048187751 (ISBN) Zaheditochai, M ; Zahedi, E ; Mohd Ali, M. A ; Sharif University of Technology
    2010
    Abstract
    Dyslipidemia is considered to be one of the main heart risk factors, affecting the endothelial vascular function, which can be non-invasively investigated by ultrasound flow-mediated dilation (US-FMD). However, US-FMD comes at a high-cost and is operator-dependent. In this paper, the effect of dyslipidemia on the photoplethysmogram (PPG) signal recorded from collateral index fingers is investigated following a previous study where it was shown that results similar to that of US-FMD can be replicated by the PPG. Two groups, consisting of 30 healthy subjects free from any risk factors and 30 subjects who have only dyslipidemia as risk factor were respectively considered. The percent change in... 

    Relationship between wetting properties and macroscale hydrodynamics during forced gravity drainage and secondary waterflood

    , Article Petroleum Science and Technology ; Volume 28, Issue 8 , 2010 , Pages 804-815 ; 10916466 (ISSN) Rostami, B ; Kharrat, R ; Ghotbi, C ; Alipour Tabrizy, V ; Sharif University of Technology
    Abstract
    In order to relate the wetting properties at the pore scale to the macroscale prevailing forces, a series of experiments was performed in vertical porous media under forced gas invasion at various wettability conditions with partially spreading oil. To describe the dynamics of oil recovery in a three-phase flow condition, the downward gas flood experiments were continued by water injection from the bottom. Experimental results obtained in situations where the magnitudes of viscous, capillary, and gravity forces are comparable. We study the transition from flow configurations where the interface is stable with respect to viscous instability to flow configurations where viscous fingering... 

    Self-powered ultraviolet/visible photodetector based on graphene-oxide via triboelectric nanogenerators performing by finger tapping

    , Article Nanotechnology ; Volume 33, Issue 47 , 2022 ; 09574484 (ISSN) Ejehi, F ; Shooshtari, L ; Mohammadpour, R ; Asadian, E ; Sasanpour, P ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    Self-sufficient power sources provide a promising application of abundant electronic devices utilized in detection of ambient properties. Recently, triboelectric nanogenerators (TENGs) have been widely investigated to broaden the self-powered systems by converting the ambient mechanical agitations into electrical voltage and current. Graphene oxide (GO), not only for sensing applications but also as a brilliant energy-related nanomaterial, provides a wide range of controllable bandgap energies, as well as facile synthesis route. In this study, GO-based self-powered photodetectors have been fabricated by conflating the photosensitivity and triboelectric characteristics of freestanding GO... 

    Discrimination between different degrees of coronary artery disease using time-domain features of the finger photoplethysmogram in response to reactive hyperemia

    , Article Biomedical Signal Processing and Control ; Volume 18 , 2015 , Pages 282-292 ; 17468094 (ISSN) Hosseini, Z. S ; Zahedi, E ; Movahedian Attar, H ; Fakhrzadeh, H ; Parsafar, M. H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Atherosclerosis is a major cause of coronary artery disease leading to morbidity and mortality worldwide. Currently, coronary angiography is considered to be the most accurate technique to diagnose coronary artery disease (CAD). However, this technique is an invasive and expensive procedure with risks of serious complications. Since the symptoms of CAD are not noticed until advanced stages of the disease, early and effective diagnosis of CAD is considered a pertinent measure. In this paper, a non-invasive optical signal, the finger photoplethysmogram (PPG) obtained before and after reactive hyperemia is investigated to discriminate between subjects with different CAD conditions. To this end,... 

    Extended-fem Modeling of Advective-dispersive Transport under Variable-density Flow in Heterogeneous Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Farnoudi, Kaveh (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    This thesis aims to present a computationally efficient extended finite element model for the simulation of isothermal single-phase coupled advective-dispersive transport and variable-density/viscosity flow in a saturated, rigid, heterogeneous and fractured porous media with a particular application to miscible viscous fingering instabilities and dispersive mixing in subsurface formations. Density-driven flows arise from differences in salinity or temperature within a fluid body. The partial differential equations governing system is given by the mass conservation equation of the fluid phase, as well as by the advection-diffusion transport equation of the solute concentration. The... 

    Pore-Scale Investigation of Polymer Enhanced Low Salinity Water flooding EOR

    , M.Sc. Thesis Sharif University of Technology Posht Panah, Mohammad Reza (Author) ; Mahani, Hassan (Supervisor) ; Rostami, Behzad (Supervisor)
    Abstract
    Low salinity water flooding (LSWF) is a relatively new EOR method in which low salinity or modified ionic composition water is injected into the reservoir to alter its wettability toward a more water-wettable state to accelerate oil recovery. Ease of field deployment and relatively low cost, as well as laboratory results confirming the positive effect of this method in improving the oil recovery factor, have made this technique attractive in the oil industry.Despite the many advantages of this method, overcoming the mixing between low and high salinity water which occurs due to a high mobility ratio between these two fluids is essential because it negatively affects the efficiency of LSWF.... 

    Five-class finger flexion classification using ECoG signals

    , Article 2010 International Conference on Intelligent and Advanced Systems, ICIAS 2010, 15 June 2010 through 17 June 2010 ; 2010 ; 9781424466238 (ISBN) Samiee, S ; Hajipour, S ; Shamsollahi, M. B ; Sharif University of Technology
    Abstract
    Increasing the number of car accidents and other cerebral disease cause to progress in using Brain-Compute Interface (BCI) as a common subject for research and treatment. The aim of Brain-Computer Interface system is to establish a new communication system that translates human intentions, reflected by brain signals, into a control signal for an output device such as a computer. To this end, different processes must be done on brain signals and these signals must be classified by suitable methods. There are various methods to classify ECoG signals which are different in features and classifiers. Used features depend on extracted features, feature reduction methods and measures of feature... 

    Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium

    , Article Physics of Fluids ; Volume 29, Issue 6 , 2017 ; 10706631 (ISSN) Rokhforouz, M. R ; Akhlaghi Amiri, A ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    Spontaneous imbibition is well-known to be one of the most effective processes of oil recovery in fractured reservoirs. However, the detailed pore-scale mechanisms of the counter-current imbibition process and the effects of different fluid/rock parameters on this phenomenon have not yet been deeply addressed. Thiswork presents the results of a newpore-level numerical study of counter-current spontaneous imbibition, using coupled Cahn-Hilliard phase field and Navier-Stokes equations, solved by a finite element method. A 2D fractured medium was constructed consisting of a nonhomogeneous porous matrix, in which the grains were represented by an equilateral triangular array of circles with... 

    Numerical study of the mixing dynamics of trans- And supercritical coaxial jets

    , Article Physics of Fluids ; Volume 32, Issue 12 , 2020 Poormahmood, A ; Farshchi, M ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Characterization of the transcritical coaxial injectors, accounting for the geometrical features and thermodynamics nonlinearities, is of both practical and fundamental importance. In the present study, the interactions and effects of turbulent mixing and pseudo-boiling phenomena are investigated. To do this, the mixing dynamics of bi-shear jets injected under trans- and supercritical conditions has been investigated numerically using the large-eddy simulation technique. The numerical framework provides real-gas thermodynamics and transport properties, using the Peng-Robinson equation-of-state and Chung's models, respectively. The obtained flow quantities are in good agreement with the... 

    Analysis of the effect of ageing on rising edge characteristics of the photoplethysmogram using a modified windkessel model

    , Article Cardiovascular Engineering ; Volume 7, Issue 4 , 2007 , Pages 172-181 ; 15678822 (ISSN) Zahedi, E ; Chellappan, K ; Mohd Ali, M. A ; Singh, H ; Sharif University of Technology
    2007
    Abstract
    Ageing is one of the main contributing factors towards increasing arterial stiffness, leading to changes in peripheral pulses propagation. Therefore the characteristics of the photoplethysmogram (PPG) pulse, especially the rising edge and peak position, are greatly affected. In this study, the PPG pulse rising edge and corresponding peak position have been investigated non-invasively in human subjects as a function of age. Fifteen healthy subjects were selected and grouped in five age intervals, from 20 to 59 years, based on their comparable systolic-diastolic blood pressure and PPG amplitude. As expected, the peripheral pulse shows a steep rise and early peak in younger subjects. With age,... 

    Numerical analysis of two-phase flow in heterogeneous porous media during pre-flush stage of matrix acidizing: Optimization by response surface methodology

    , Article Physics of Fluids ; Volume 33, Issue 5 , 2021 ; 10706631 (ISSN) Sabooniha, E ; Rokhforouz, M. R ; Kazemi, A ; Ayatollahi, S ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Oil trapping behavior during the pre-flush stage is critically important to evaluate the effectiveness of matrix acidizing for the oil well stimulation. In this study, the visco-capillary behavior of the two-phase flow in the pore-scale is analyzed to investigate the influence of wetting properties for a natural rock sample. A two-dimensional model, based on Cahn-Hilliard phase-field and Navier-Stokes equations, was established and solved using the finite element method. A stability phase diagram for log capillary number (Ca)-log viscosity ratio (M) was constructed and then compared with the reported experimental works. The maximum and minimum ranges of capillary number and viscosity ratio... 

    Characterizing the Role of Shale Geometry and Connate Water Saturation on Performance of Polymer Flooding in Heavy Oil Reservoirs: Experimental Observations and Numerical Simulations

    , Article Transport in Porous Media ; Volume 91, Issue 3 , 2012 , Pages 973-998 ; 01693913 (ISSN) Mohammadi, S ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Many heavy oil reservoirs contain discontinuous shales which act as barriers or baffles to flow. However, there is a lack of fundamental understanding about how the shale geometrical characteristics affect the reservoir performance, especially during polymer flooding of heavy oils. In this study, a series of polymer injection processes have been performed on five-spot glass micromodels with different shale geometrical characteristics that are initially saturated with the heavy oil. The available geological characteristics from one of the Iranian oilfields were considered for the construction of the flow patterns by using a controlled-laser technology. Oil recoveries as a function of pore...