Loading...
Search for: finite-difference-method
0.019 seconds
Total 169 records

    Revealing electrical stresses acting on the surface of protoplast cells under electric field

    , Article European Journal of Mechanics, B/Fluids ; Volume 76 , 2019 , Pages 292-302 ; 09977546 (ISSN) Dastani, K ; Moghimi Zand, M ; Hadi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    When cells exposed to an electric field, localized changes in the distribution of the electric field will be induced and these changes in turn lead to electrical stresses on cell surface. The electrical stresses play a key role in the cell membrane structural changes which leads to important phenomena like hydrophilic pores formation on the cell membrane resulting in the cell permeability. In this work, protoplast cell interaction with direct current (DC) electric field is investigated. The electrical stresses acted on the cell membrane in the presence of electric field are investigated numerically by a modified finite difference method, fast Immersed Interface Method (IIM). Exact solution... 

    Reflection analysis of the end-facet dielectric slab waveguide by FDTD method

    , Article ICCEA 2004 - 2004 3rd International Conference on Computational Electromagnetics and its Applications, Beijing, 1 November 2004 through 4 November 2004 ; 2004 , Pages 453-456 ; 0780385624 (ISBN) Vahidpour, M ; Shishegar, A. A ; Sharif University of Technology
    2004
    Abstract
    The Finite Difference Time Domain (FDTD) method has been applied to the analysis of abruptly-ended dielectric waveguides. In these waveguides, incident propagating wave undergoes reflection in an interaction with the end-facet. As a result of the discontinuity, all possible propagating modes may be excited. The constituent propagating modes are extracted from the reflected wave by the least square method. Thus, we present a good estimation of the amplitudes of the reflected modes. This full wave analysis technique is also capable of analyzing any arbitrarily shaped facet. © 2004 IEEE  

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; 2017 , Pages 1-21 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; Volume 32, Issue 1 , 2018 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Propagation noise calculations in VVER-type reactor core

    , Article Progress in Nuclear Energy ; Volume 78 , January , 2015 , Pages 10-18 ; 01491970 (ISSN) Malmir, H ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Neutron noise induced by propagating disturbances in VVER-type reactor core is addressed in this paper. The spatial discretization of the governing equations is based on the box-scheme finite difference method for triangular-z geometry. Using the derived equations, a 3-D 2-group neutron noise simulator (called TRIDYN-3) is developed for hexagonal-structured reactor core, by which the discrete form of both the forward and adjoint reactor dynamic transfer functions (in the frequency domain) can be calculated. In addition, both types of noise sources, namely point-like and traveling perturbations, can be modeled by TRIDYN-3. The results are then benchmarked in different cases. Considering the... 

    Prediction of fluid flow and acoustic field of a supersonic jet using vorticity confinement

    , Article Journal of the Acoustical Society of America ; Volume 144, Issue 3 , 2018 , Pages 1521-1527 ; 00014966 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    Acoustical Society of America  2018
    Abstract
    In this study, the numerical simulation of the fluid flow and acoustic field of a supersonic jet is performed by using high-order discretization and the vorticity confinement (VC) method on coarse grids. The three-dimensional Navier-Stokes equations are considered in the generalized curvilinear coordinate system and the high-order compact finite-difference scheme is applied for the space discretization, and the time integration is performed by the fourth-order Runge-Kutta scheme. A low-pass high-order filter is applied to stabilize the numerical solution. The non-reflecting boundary conditions are adopted for all the free boundaries, and the Kirchhoff surface integration is utilized to... 

    Preconditioned WENO finite-difference lattice Boltzmann method for simulation of incompressible turbulent flows

    , Article Computers and Mathematics with Applications ; Volume 76, Issue 6 , 2018 , Pages 1427-1446 ; 08981221 (ISSN) Hejranfar, K ; Saadat, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this work, a preconditioned high-order weighted essentially non-oscillatory (WENO) finite-difference lattice Boltzmann method (WENO-LBM) is applied to deal with the incompressible turbulent flows. Two different turbulence models namely, the Spalart–Allmaras (SA) and k−ωSST models are used and applied in the solution method for this aim. The spatial derivatives of the two-dimensional (2D) preconditioned LB equation in the generalized curvilinear coordinates are discretized by using the fifth-order WENO finite-difference scheme and an implicit–explicit Runge–Kutta scheme is adopted for the time discretization. For the convective and diffusive terms of the turbulence transport equations, the... 

    Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    , Article Journal of Computational Physics ; Volume 345 , 2017 , Pages 543-564 ; 00219991 (ISSN) Hejranfar, K ; Parseh, K ; Sharif University of Technology
    Abstract
    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter... 

    Practical prediction of supersonic viscous flows over complex configurations using personal computers

    , Article Journal of Spacecraft and Rockets ; Volume 38, Issue 5 , 2001 , Pages 795-798 ; 00224650 (ISSN) Esfahanian, V ; Azimi, A ; Hejranfar, K ; Sharif University of Technology
    2001

    Optimal riser design in sand casting process by topology optimization with SIMP method I: poisson approximation of nonlinear heat transfer equation

    , Article Structural and Multidisciplinary Optimization ; Volume 36, Issue 2 , 25 January , 2008 , Pages 193-202 ; 1615147X (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    The optimal design of a casting feeding system is considered. The problem is formulated as the volume constrained topology optimization and is solved with the finite element analysis, explicit design sensitivity, and numerical optimization. In contrast to the traditional topology optimization where the objective function is defined on the design space, in the presented method, the design space is a subset of the complement of the objective function space. To accelerate optimization procedure, the nonlinear unsteady heat transfer equation is approximated with a Poisson-like equation. The feasibility of the presented method is supported with illustrative examples. © 2007 Springer-Verlag  

    Open-and short-circuit switch fault diagnosis for nonisolated DC-DC converters using field programmable gate array

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 9 , October , 2013 , Pages 4136-4146 ; 02780046 (ISSN) Shahbazi, M ; Jamshidpour, E ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    2013
    Abstract
    Fault detection (FD) in power electronic converters is necessary in embedded and safety critical applications to prevent further damage. Fast FD is a mandatory step in order to make a suitable response to a fault in one of the semiconductor devices. The aim of this study is to present a fast yet robust method for fault diagnosis in nonisolated dc-dc converters. FD is based on time and current criteria which observe the slope of the inductor current over the time. It is realized by using a hybrid structure via coordinated operation of two FD subsystems that work in parallel. No additional sensors, which increase system cost and reduce reliability, are required for this detection method. For... 

    On the use of high-order accurate solutions of PNS schemes as basic flows for stability analysis of hypersonic axisymmetric flows

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 129, Issue 10 , 2007 , Pages 1328-1338 ; 00982202 (ISSN) Heiranfar, K ; Esfahanian, V ; Mahmoodi Darian, H ; Sharif University of Technology
    2007
    Abstract
    High-order accurate solutions of parabolized Navier-Stokes (PNS) schemes are used as basic flow models for stability analysis of hypersonic axisymmetric flows over blunt and sharp cones at Mach 8. Both the PNS and the globally iterated PNS (IPNS) schemes are utilized. The IPNS scheme can provide the basic flow field and stability results comparable with those of the thin-layer Navier-Stokes (TLNS) scheme. As a result, using the fourth-order compact IPNS scheme, a high-order accurate basic flow model suitable for stability analysis and transition prediction can be efficiently provided. The numerical solution of the PNS equations is based on an implicit algorithm with a shock fitting procedure... 

    On coarse grids simulation of compressible mixing layer flows using vorticity confinement

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 140, Issue 3 , 2018 ; 00982202 (ISSN) Hejranfar, K ; Ebrahimi, M ; Sadri, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    In this work, the capability and performance of the vorticity confinement (VC) implemented in a high-order accurate flow solver in predicting two-dimensional (2D) compressible mixing layer flows on coarse grids are investigated. Here, the system of governing equations with incorporation of the VC in the formulation is numerically solved by the fourth-order compact finite difference scheme. To stabilize the numerical solution, a low-pass high-order filter is applied, and the nonreflective boundary conditions are used at the farfield and outflow boundaries to minimize the reflections. At first, the numerical results without applying the VC are validated by available direct numerical... 

    On application of high-order compact finite-difference schemes to compressible vorticity confinement method

    , Article Aerospace Science and Technology ; Volume 46 , October–November , 2015 , Pages 398-411 ; 12709638 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    Elsevier Masson SAS  2015
    Abstract
    The main goal of this study is to assess the application of high-order compact finite-difference schemes for the solution of the Euler equations in conjunction with the compressible vorticity confinement method on both uniform Cartesian and curvilinear grids. Here, the spatial discretization of the governing equations is performed by the fourth-order compact finite-difference scheme and the temporal term is discretized by the fourth-order Runge-Kutta method. To stabilize the numerical solution, appropriate dissipation terms are applied and a detail assessment is performed to study the effects of the values of confinement and dissipation coefficients on the solution to reasonably preserve the... 

    Numerical solution of non-fourier heat transfer during laser irradiation on tooth layers

    , Article Journal of Mechanical Science and Technology ; Volume 31, Issue 12 , 2017 , Pages 6085-6092 ; 1738494X (ISSN) Falahatkar, S ; Nouri Borujerdi, A ; Najafi, M ; Mohammadzadeh, A ; Sharif University of Technology
    Abstract
    This study reports on the simulation of temperature distribution of human tooth under a laser beam based on non-Fourier models. The temperature in the tooth depth that directly results from the conduction heat transfer process is caused by the lengthy thermal relaxation time in the tooth layers. A detailed tooth composed of enamel, dentin, and pulp with unstructured shape, uneven boundaries, and realistic thicknesses was considered. A finite difference scheme was separately adopted to solve time-dependent equations in solid layers and soft tissue of the tooth. In this study, a dual-phase-lag non-Fourier heat conduction model was applied to evaluate temperature distribution induced by laser... 

    Numerical solution of homogeneous double pipe heat exchanger: Dynamic modeling

    , Article Scientia Iranica ; Volume 21, Issue 2 , 2014 , pp. 449-455 ; ISSN: 10263098 AliHosseinpour, H ; Kazemi, Y ; Fattahi, M ; Sharif University of Technology
    Abstract
    Dynamic modeling of a double-pipe heat exchanger is the subject of the current study. The basis of this study is the same velocity of vapor and liquid phases or, in other words, homogeneous phase, in the annulus part of the exchanger. The model can predict the temperature and vapor quality along the axial pipe from the pipe inlet up to a distance where steady state conditions are achieved. The simulation is conducted for two modes of co- and counter-flow in a one dimensional transient system. The physical properties of water are estimated from empirical correlation and a saturated vapor table with cubic spline interpolation. The exchanger model, which is a set of Ordinary Differential... 

    Numerical simulation of structural dynamics using a high-order compact finite-difference scheme

    , Article Applied Mathematical Modelling ; Volume 40, Issue 3 , 2016 , Pages 2431-2453 ; 0307904X (ISSN) Hejranfar, K ; Parseh, K ; Sharif University of Technology
    Elsevier Inc 
    Abstract
    A high-order compact finite-difference scheme is applied and assessed for the numerical simulation of structural dynamics. The two-dimensional elastic stress-strain equations are considered in the generalized curvilinear coordinates and the spatial derivatives in the resulting equations are discretized by a fourth-order compact finite-difference scheme. For the time integration, an implicit second-order dual time-stepping method is utilized in which a fourth-order Runge-Kutta scheme is used to integrate in the pseudo-time level. The accuracy and robustness of the solution procedure proposed are investigated through simulating different two-dimensional benchmark test cases in structural... 

    Numerical simulation of shock-disturbances interaction in high-speed compressible inviscid flow over a blunt nose using weighted essentially non-oscillatory scheme

    , Article Wave Motion ; Volume 88 , 2019 , Pages 167-195 ; 01652125 (ISSN) Hejranfar, K ; Rahmani, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present study, shock-disturbances interaction in high-speed compressible inviscid flow is simulated utilizing the weighted essentially non-oscillatory (WENO) scheme by employing the shock-capturing technique. For this aim, the two-dimensional Euler equations in strong conservative form are discretized by using the explicit third-order TVD Runge–Kutta scheme in time and the fifth-order WENO finite difference scheme in space. The main advantage of using the WENO scheme is its capability for properly solving the discontinuities in the domain without needing any artificial viscosity, limiter function or filter. Hence, this scheme is stable, and thus, it is suitable for simulating very... 

    Numerical simulation of sand production experiment using a coupled Lattice Boltzmann-Discrete Element Method

    , Article Journal of Petroleum Science and Engineering ; Volume 135 , November , 2015 , Pages 218-231 ; 09204105 (ISSN) Ghassemi, A ; Pak, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, a coupled numerical approach based on Lattice Boltzmann Method (LBM) and Discrete Element Method (DEM) is employed for two-dimensional simulation of fluid flow in deformable particulate media comprising of movable circular particles. The developed LB-DE code is validated against the results of a bi-axial shear test as well as two well-known benchmark problems including settling of a circular particle under gravity force inside a viscous fluid, and motion of a neutrally buoyant particle released in a Poiseuille flow. The verified code is then utilized for simulation of "Sand Production" phenomenon which is of importance for oil producing wells in weakly cemented sandstone... 

    Numerical simulation of liquid/gas phase flow during mold filling

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 196, Issue 1-3 , 2006 , Pages 697-713 ; 00457825 (ISSN) Tavakoli, R ; Babaei, R ; Varahram, N ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    A numerical model for simulation of liquid/gas phase flow during mold filling is presented. The incompressible Navier-Stokes equations are discretized on a fixed Cartesian mesh with finite difference method. The fractional-step scheme is employed for enforcing incompressibility constraint. The free surface effects are calculated using the volume of fluid method based on the piecewise-linear interface reconstruction and split Lagrangian advection of volume fraction field. Adding limited compressibility to the gas phase led to improvement in convergence rate of Poisson equation solver (about 2-fold). This new concept permits simulation of two-phase incompressible free surface flow during mold...