Loading...
Search for: finite-difference-methods
0.01 seconds
Total 169 records

    Insights into the pore-scale mechanisms of formation damage induced by drilling fluid and its control by silica nanoparticles

    , Article Energy and Fuels ; Volume 34, Issue 6 , 20 May , 2020 , Pages 6904-6919 Mohammadi, M ; Mahani, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    The formation damage (FD) caused by the invasion of drilling fluid severely affects reservoir performance during production. Most of the published research studies which address this type of FD have been carried out at the core or field scale. Thus, the main aim of the paper is to investigate the pore-scale mechanisms of FD induced by drilling fluids and their control with silica nanoparticles (NPs) using a microfluidic approach. The proper identification of the mechanisms of FD can lead to the proper selection of NP type and concentration as well as a suitable method to remediate FD. The micromodel was designed in a way to closely simulate the cross-flow at the wellbore surface. A... 

    Delay-Optimal cooperation policy in a slotted aloha full-duplex wireless network: static approach

    , Article IEEE Systems Journal ; Volume 14, Issue 2 , 2020 , Pages 2257-2268 Vaezi, K ; Ashtiani, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    We consider a cooperative wireless communication network comprising two full-duplex (FD) nodes transmitting to a common destination based on slotted Aloha protocol. Each node has exogenous arrivals and also may relay some of the unsuccessfully transmitted packets of the other node. In this article, we find the optimal static policies of nodes in order to minimize the sum of the average transmission delays, while the average transmission delay of each node is constrained. The static policy of each node specifies the probability of accepting an unsuccessfully transmitted packet of the other node and how the node prioritizes its transmissions. We show that in the optimal policies, just the node... 

    Influence of Darcy number on the onset of convection in a porous layer with a uniform heat source

    , Article International Journal of Thermal Sciences ; Volume 47, Issue 8 , August , 2008 , Pages 1020-1025 ; 12900729 (ISSN) Nouri Borujerdi, A ; Noghrehabadi, A. R ; Rees, D. A. S ; Sharif University of Technology
    2008
    Abstract
    This note considers the effect of different Darcy numbers on the onset of natural convection in a horizontal, fluid-saturated porous layer with uniform internal heating. It is assumed that the two bounding surfaces are maintained at constant but equal temperatures and that the fluid and porous matrix are in local thermal equilibrium. Linear stability theory is applied to the problem, and numerical solutions obtained using compact fourth order finite differences are presented for all Darcy numbers between Da = 0 (Darcian porous medium) and Da → ∞ (the clear fluid limit). The numerical work is supplemented by an asymptotic analysis for small values Da. © 2007 Elsevier Masson SAS. All rights... 

    Optimal riser design in sand casting process by topology optimization with SIMP method I: poisson approximation of nonlinear heat transfer equation

    , Article Structural and Multidisciplinary Optimization ; Volume 36, Issue 2 , 25 January , 2008 , Pages 193-202 ; 1615147X (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    The optimal design of a casting feeding system is considered. The problem is formulated as the volume constrained topology optimization and is solved with the finite element analysis, explicit design sensitivity, and numerical optimization. In contrast to the traditional topology optimization where the objective function is defined on the design space, in the presented method, the design space is a subset of the complement of the objective function space. To accelerate optimization procedure, the nonlinear unsteady heat transfer equation is approximated with a Poisson-like equation. The feasibility of the presented method is supported with illustrative examples. © 2007 Springer-Verlag  

    The application of corrugated parallel bundle model to immobilized cells in porous microcapsule membranes

    , Article Journal of Membrane Science ; Volume 311, Issue 1-2 , 2008 , Pages 159-164 ; 03767388 (ISSN) Biria, D ; Zarrabi, A ; Khosravi, A ; Sharif University of Technology
    2008
    Abstract
    To describe immobilized cells in porous microcapsule membranes with straight pores, a novel model called corrugated parallel bundle model (CPBM) was utilized. In this model, a network was developed with 10 main pores each composing 10 pore elements. Cell growth kinetic in the network was examined using non-structural models. Effectiveness factor and pore plugging time were calculated by solving reaction-diffusion equation set via finite difference method. The findings revealed that diffusion coefficient for lower order reactions will create a lesser impact on the reduction of effectiveness factor. These findings also indicated that the use of such supporting carrier for cell immobilization... 

    Implementation of high-order compact finite-difference method to parabolized Navier-Stokes schemes

    , Article International Journal for Numerical Methods in Fluids ; Volume 58, Issue 6 , 2008 , Pages 659-685 ; 02712091 (ISSN) Esfahanian, V ; Hejranfar, K ; Mahmoodi Darian, H ; Sharif University of Technology
    2008
    Abstract
    The numerical solution to the parabolized Navier-Stokes (PNS) and globally iterated PNS (IPNS) equations for accurate computation of hypersonic axisymmetric flowfields is obtained by using the fourth-order compact finite-difference method. The PNS and IPNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock-fitting procedure is utilized in both compact PNS and IPNS schemes to obtain accurate solutions in the vicinity of the shock. The main advantage of the present formulation is that the basic flow variables and their first and second derivatives are simultaneously... 

    A moving-mesh finite-volume method to solve free-surface seepage problem in arbitrary geometries

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 31, Issue 14 , 2007 , Pages 1609-1629 ; 03639061 (ISSN) Darbandi, M ; Torabi, S. O ; Saadat, M ; Daghighi, Y ; Jarrahbashi, D ; Sharif University of Technology
    2007
    Abstract
    The main objective of this work is to develop a novel moving-mesh finite-volume method capable of solving the seepage problem in domains with arbitrary geometries. One major difficulty in analysing the seepage problem is the position of phreatic boundary which is unknown at the beginning of solution. In the current algorithm, we first choose an arbitrary solution domain with a hypothetical phreatic boundary and distribute the finite volumes therein. Then, we derive the conservative statement on a curvilinear co-ordinate system for each cell and implement the known boundary conditions all over the solution domain. Defining a consistency factor, the inconsistency between the hypothesis... 

    A higher-order two-dimensional Boussinesq wave model

    , Article Journal of Coastal Research ; Issue SPEC. ISSUE 50 , 2007 , Pages 1183-1187 ; 07490208 (ISSN) Ataie Ashtiani, B ; Najafi Jilani, A ; Sharif University of Technology
    2007
    Abstract
    A two-dimensional Boussinesq-type model is presented accurate to O(μ)6 , μ = h0/l0, in dispersion and all consequential order for non-linearity with arbitrary bottom boundary, where h0 is the water depth and l0 is the characteristic wave length. The mathematical formulation is an extension of (4,4) the Padé approximant to include varying bottom boundary in two horizontal dimensions. A higher order perturbation method is used for mathematical derivation of the presented model. A two horizontal dimension numerical model is developed based on derived equations using the Finite Difference Method in higher-order scheme for time and space. The numerical wave model is verified successfully in... 

    Dynamic modeling of the turning process of slip-cast fused silica ceramics using the discrete element method

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 234, Issue 3 , 2020 , Pages 629-640 Roostai, H ; Movahhedy, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Simulation of brittle regime machining of materials (such as ceramics) is often difficult because of the complex material removal mechanisms involved. In this study, the discrete element method is used to simulate the dynamic process for machining of slip-cast fused silica ceramics. Flat-joint contact model is exploited to model contacts between particles in synthetic discrete element method models. This contact model is suitable for modeling of brittle materials with high ratios (higher than 10) of unconfined compressive strength to tensile strength. The discrete element method has the ability to simulate initiation, propagation, and coalescence of cracks leading to chip formation in the... 

    On the use of high-order accurate solutions of PNS schemes as basic flows for stability analysis of hypersonic axisymmetric flows

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 129, Issue 10 , 2007 , Pages 1328-1338 ; 00982202 (ISSN) Heiranfar, K ; Esfahanian, V ; Mahmoodi Darian, H ; Sharif University of Technology
    2007
    Abstract
    High-order accurate solutions of parabolized Navier-Stokes (PNS) schemes are used as basic flow models for stability analysis of hypersonic axisymmetric flows over blunt and sharp cones at Mach 8. Both the PNS and the globally iterated PNS (IPNS) schemes are utilized. The IPNS scheme can provide the basic flow field and stability results comparable with those of the thin-layer Navier-Stokes (TLNS) scheme. As a result, using the fourth-order compact IPNS scheme, a high-order accurate basic flow model suitable for stability analysis and transition prediction can be efficiently provided. The numerical solution of the PNS equations is based on an implicit algorithm with a shock fitting procedure... 

    2D parallel and stable group explicit finite difference method for solution of diffusion equation

    , Article Applied Mathematics and Computation ; Volume 188, Issue 2 , 2007 , Pages 1184-1192 ; 00963003 (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2007
    Abstract
    Recently various versions of alternating group explicit or alternating group explicit-implicit methods were proposed for solution of diffusion equation. The main benefits of these methods are: good stability, accuracy and parallelizing. But these methods were developed for 1D case and stability and accuracy were investigated for 1D case too. In the present study we extend the new group explicit method [R. Tavakoli, P. Davami, New stable group explicit finite difference method for solution of diffusion equation, Appl. Math. Comput. 181 (2006) 1379-1386] to 2D with operator splitting method. The implementation of method is discussed in details. Our numerical experiment shows that such 2D... 

    A new parallel Gauss-Seidel method based on alternating group explicit method and domain decomposition method

    , Article Applied Mathematics and Computation ; Volume 188, Issue 1 , 2007 , Pages 713-719 ; 00963003 (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2007
    Abstract
    A new parallel Gauss-Seidel method is presented for solution of system of linear equations related to finite difference discretization of partial differential equations. This method is based on domain decomposition method and local coupling between interfaces of neighbor sub-domains, same as alternating group explicit method. This method is convergent and number of iterations for achieving convergence criteria is near the original Gauss-Seidel method (sometimes better and sometimes worse but difference is very small). The convergence theory is discussed in details. Numerical results are given to justify the convergence and performance of the proposed iterative method. © 2006 Elsevier Inc.... 

    A higher-order Boussinesq-type model with moving bottom boundary: Applications to submarine landslide tsunami waves

    , Article International Journal for Numerical Methods in Fluids ; Volume 53, Issue 6 , 2007 , Pages 1019-1048 ; 02712091 (ISSN) Ataie Ashtiani, B ; Najafi Jilani, A ; Sharif University of Technology
    2007
    Abstract
    A two-dimensional depth-integrated numerical model is developed using a fourth-order Boussinesq approximation for an arbitrary time-variable bottom boundary and is applied for submarine-landslide-generated waves. The mathematical formulation of model is an extension of (4,4) Padé approximant for moving bottom boundary. The mathematical formulations are derived based on a higher-order perturbation analysis using the expanded form of velocity components. A sixth-order multi-step finite difference method is applied for spatial discretization and a sixth-order Runge-Kutta method is applied for temporal discretization of the higher-order depth-integrated governing equations and boundary... 

    Unconditionally stable fully explicit finite difference solution of solidification problems

    , Article Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science ; Volume 38, Issue 1 , 2007 , Pages 121-142 ; 10735615 (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2007
    Abstract
    An unconditionally stable fully explicit finite difference method for solution of conduction dominated phase-change problems is presented. This method is based on an asymmetric stable finite difference scheme for approximation of diffusion terms and application of the temperature recovery method as a phase-change modeling method. The computational cost of the presented method is the same as the explicit method per time-step, while it is free from time-step limitation due to stability criteria. It robustly handles isothermal and nonisothermal phase-change problems and is very efficient when the global temperature field is desirable (not accurate front position). The robustness, stability,... 

    New stable group explicit finite difference method for solution of diffusion equation

    , Article Applied Mathematics and Computation ; Volume 181, Issue 2 , 2006 , Pages 1379-1386 ; 00963003 (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    A new group explicit method for solution of diffusion equation is presented. This method is based on domain decomposition concept and using asymmetric Saul'yev schemes for internal nodes of each sub-domain and alternating group explicit method for sub-domain's interfacial nodes. This new method has several advantages such as: good parallelism, unconditional stability, fully explicit nature and better accuracy than original Saul'yev schemes. The details of implementation and proving stability are briefly discussed. Numerical experiments on stability and accuracy are also presented. © 2006 Elsevier Inc. All rights reserved  

    Improved advection algorithm of computational modeling of free surface flow using structured grids

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 195, Issue 7-8 , 2006 , Pages 775-795 ; 00457825 (ISSN) Babaei, R ; Abdollahi, J ; Homayonifar, P ; Varahram, N ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    In the present study a finite difference method has been developed to model the transient fluid flow and heat transfer. A single fluid has been selected for modeling of mold filling and The SOLA-VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. The model was then evaluated with the experimental methods. Refereeing to the experimental and simulation results a good consistency and the accuracy of the suggested model are confirmed. © 2005 Published by Elsevier B.V  

    Dynamics of multi layer microplates considering nonlinear squeeze film damping

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 1096665X (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Ahmadian, M. T ; Moghimi Zand, M ; Borhan, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    This paper presents a model to analyze pull-in phenomenon and dynamics of multi layer microplates using coupled finite element and finite difference methods. Firstorder shear deformation theory is used to model dynamical system using finite element method, while Finite difference method is applied to solve the nonlinear Reynolds equation of squeeze film damping. Using this model, Pull-in analysis of single layer and multi layer microplates are studied. The results of pull-in analysis are in good agreement with literature. Validating our model by pull-in results, an algorithm is presented to study dynamics of microplates. These simulations have many applications in designing multi layer... 

    Implementation of high-order compact schemes to the iterative parabolized Navier-Stokes equations

    , Article 25th Congress of the International Council of the Aeronautical Sciences 2006, Hamburg, 3 September 2006 through 8 September 2006 ; Volume 3 , 2006 , Pages 1628-1643 Esfahanian, V ; Hejranfar, K ; Darian, H. M ; Sharif University of Technology
    Curran Associates Inc  2006
    Abstract
    The numerical solution of the parabolized Navier-Stokes (PNS) and globally iterated PNS (IPNS) equations for accurate computation of hypersonic axisymmetric flowfields is obtained by using the fourth-order compact finite-difference method. The PNS and IPNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock fitting procedure is utilized in both the compact PNS and IPNS schemes to obtain accurate solutions in the vicinity of the shock. The main advantage of the present formulation is that the basic flow variables and their first and second derivatives are... 

    An optimized large-stencil approach for capturing near-PI frequencies

    , Article 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, 8 May 2006 through 10 May 2006 ; Volume 5 , 2006 , Pages 3010-3022 ; 1563478099 (ISBN); 9781563478093 (ISBN) Ghasemi, A ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2006
    Abstract
    Large-stencil schemes which their spectral properties are acceptable in the vicinity of ω = π are analyzed for the first time. A machine independent model for evaluating the efficiency of generalized time-marching finite-difference algorithms over periodic domains is developed. This model which is based on operation count reveals that for small values of Total Computational Cost(TCC), the previous low-order small-stencil schemes are more efficient while for moderate TCC, the efficiency of optimized large-stencil schemes abruptly increases. This important result is the motivation for developing optimized large-stencil schemes. The current schemes are successfully implemented in a full... 

    BEM modeling of surface water wave motion with laminar boundary layers

    , Article Engineering Analysis with Boundary Elements ; Volume 30, Issue 1 , 2006 , Pages 14-21 ; 09557997 (ISSN) Jamali, M ; Sharif University of Technology
    2006
    Abstract
    This study is concerned with numerical modeling of viscous surface wave motion using boundary element method (BEM). The equations of motion for thin boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM-finite difference technique is used to obtain the viscosity-related quantities such as wave damping rate, shear stress, and velocity distribution inside the boundary layer. The technique is presented for standing surface wave motion. An excellent agreement is obtained between the numerical predictions and the previous results. The extension to other free surface problems is straightforward. © 2005 Elsevier Ltd. All rights reserved