Loading...
Search for: finite-difference-methods
0.013 seconds
Total 169 records

    Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    , Article International Communications in Heat and Mass Transfer ; Volume 39, Issue 5 , 2012 , Pages 705-712 ; 07351933 (ISSN) Fardi Ilkhchy, A ; Jabbari, M ; Davami, P ; Sharif University of Technology
    Abstract
    The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat conduction problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was presented for correlation between external pressure and heat transfer coefficient. Acceptable... 

    Effect of boundary conditions on dynamic behaviour of bridges

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 169, Issue 2 , 2016 , Pages 121-140 ; 09650911 (ISSN) Samanipour, K ; Vafai, H ; Sharif University of Technology
    Thomas Telford Services Ltd 
    Abstract
    A moving vehicle, owing to its vibration and mass inertia, has significant effects on the dynamic response of structures. Most bridge codes define a factor called the dynamic load allowance, which is applied to the maximum static moment under static loading due to traffic load. This paper presents how to model an actual truck on bridges and how the maximum dynamic stresses of bridges change during the passage of moving vehicles. Furthermore, an algorithm to solve the governing equation of the bridge simultaneous with the equations of motion of an actual European truck is presented. Subsequently, 32 dynamic analyses of different bridges with different spans, road profiles and boundary... 

    Dynamics of multi layer microplates considering nonlinear squeeze film damping

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 1096665X (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Ahmadian, M. T ; Moghimi Zand, M ; Borhan, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    This paper presents a model to analyze pull-in phenomenon and dynamics of multi layer microplates using coupled finite element and finite difference methods. Firstorder shear deformation theory is used to model dynamical system using finite element method, while Finite difference method is applied to solve the nonlinear Reynolds equation of squeeze film damping. Using this model, Pull-in analysis of single layer and multi layer microplates are studied. The results of pull-in analysis are in good agreement with literature. Validating our model by pull-in results, an algorithm is presented to study dynamics of microplates. These simulations have many applications in designing multi layer... 

    Dynamic modeling of the turning process of slip-cast fused silica ceramics using the discrete element method

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 234, Issue 3 , 2020 , Pages 629-640 Roostai, H ; Movahhedy, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Simulation of brittle regime machining of materials (such as ceramics) is often difficult because of the complex material removal mechanisms involved. In this study, the discrete element method is used to simulate the dynamic process for machining of slip-cast fused silica ceramics. Flat-joint contact model is exploited to model contacts between particles in synthetic discrete element method models. This contact model is suitable for modeling of brittle materials with high ratios (higher than 10) of unconfined compressive strength to tensile strength. The discrete element method has the ability to simulate initiation, propagation, and coalescence of cracks leading to chip formation in the... 

    Dynamical control of multilayer spacetime structures using extended fourier modal method

    , Article IEEE Photonics Journal ; Volume 13, Issue 6 , 2021 ; 19430655 (ISSN) Khorrami, Y ; Fathi, D ; Khavasi, A ; Rumpf, R. C ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    We introduce two-dimensional space plus time (2D+1) structure and numerically investigate it using a developed multilayer simulation framework, for the first time. The new structure is consisting of crossed grating with time-varying permittivity which is inspired from1D+1. In this regard, we extend FourierModal Method (FMM) in a general approach for spacetime multilayer states. Our proposed framework is fast, robust, and powerful compared to various finite difference methods. We use the scattering matrix technique to develop the proposed spacetime simulation method for multilayer structures using a non-uniform stack of layers. The method is perfectly suitable to investigate the... 

    Development of subchannel thermal-hydraulic analysis code for dual cooled annular fuel

    , Article Progress in Nuclear Energy ; Volume 150 , 2022 ; 01491970 (ISSN) Saffari, A. H ; Esmaili, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Regarding the geometric structural characteristics of innovative dual cooled annular fuel and the possibility of heat split and flow distribution among the internal and external channels, the development of new computational tools is essential for estimating safety margins and accurate assessment of its thermal-hydraulic performance. The SADAF code (Subchannel Analysis Dual cooled Annular Fuel) by COBRA-EN code is developed for this purpose. In the SADAF code, using COBRA-EN code for subchannel analysis in internal and external subchannels, a program has been developed to compute new variables that need to be considered in the thermal-hydraulic assessment. Also, fuel heat transfer... 

    Development of a saturation-based μ(I)-rheology for wet granular materials using discrete element method

    , Article Scientia Iranica ; Volume 28, Issue 5 B , 2021 , Pages 2719-2732 ; 10263098 (ISSN) Ghorbani, R ; Taghizadeh Manzari, M ; Hajilouy Benisi, A ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    The present study employs Discrete Element Method (DEM) to establish a rheological model that relates the apparent viscosity of a granular material to shear rate, normal stress, and water saturation. In addition, a theoretical model was developed to determine water distribution and water-induced forces between particles for different saturations. The resulting forces were embedded in a 3D shear cell as a numerical rheometer, and a wet specimen was sheared between two walls. A power law rheological model was then obtained as a function of inertia number and saturation. It was found that up to a critical saturation, the apparent viscosity increased with saturation that was higher than that of... 

    Development of a high-order compact finite-difference total Lagrangian method for nonlinear structural dynamic analysis

    , Article Applied Mathematical Modelling ; Volume 63 , 2018 , Pages 179-202 ; 0307904X (ISSN) Parseh, K ; Hejranfar, K ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    A high-order compact finite-difference total Lagrangian method (CFDTLM) is developed and applied to nonlinear structural dynamic analysis. The two-dimensional simulation of thermo-elastodynamics is numerically performed in generalized curvilinear coordinates by taking into account the geometric and material nonlinearities. The spatial discretization is carried out by a fourth-order compact finite-difference scheme and an implicit second-order accurate dual time-stepping method is applied for the time integration. The accuracy and capability of the proposed solution methodology for the nonlinear structural analysis is investigated through simulating different static and dynamic benchmark... 

    Development of a 2-D 2-group neutron noise simulator for hexagonal geometries

    , Article Annals of Nuclear Energy ; Volume 37, Issue 8 , 2010 , Pages 1089-1100 ; 03064549 (ISSN) Malmir, H ; Vosoughi, N ; Zahedinejad, E ; Sharif University of Technology
    Abstract
    In this paper, the development of a neutron noise simulator for hexagonal-structured reactor cores using both the forward and the adjoint methods is reported. The spatial discretisation of both 2-D 2-group static and dynamic equations is based on a developed box-scheme finite difference method for hexagonal mesh boxes. Using the power iteration method for the static calculations, the 2-group neutron flux and its adjoint with the corresponding eigenvalues are obtained by the developed static simulator. The results are then benchmarked against the well-known CITATION computer code. The dynamic calculations are performed in the frequency domain which leads to discarding of the time... 

    Delay-Optimal cooperation policy in a slotted aloha full-duplex wireless network: static approach

    , Article IEEE Systems Journal ; Volume 14, Issue 2 , 2020 , Pages 2257-2268 Vaezi, K ; Ashtiani, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    We consider a cooperative wireless communication network comprising two full-duplex (FD) nodes transmitting to a common destination based on slotted Aloha protocol. Each node has exogenous arrivals and also may relay some of the unsuccessfully transmitted packets of the other node. In this article, we find the optimal static policies of nodes in order to minimize the sum of the average transmission delays, while the average transmission delay of each node is constrained. The static policy of each node specifies the probability of accepting an unsuccessfully transmitted packet of the other node and how the node prioritizes its transmissions. We show that in the optimal policies, just the node... 

    Delayed data offloading based on full-duplex D2D communications in a cellular network

    , Article 2018 Iran Workshop on Communication and Information Theory, IWCIT 2018, 25 April 2018 through 26 April 2018 ; 2018 , Pages 1-6 ; 9781538641491 (ISBN) Karami, F ; Mirmohseni, M ; Ashtiani, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, we propose a new delayed data offloading scheme by exploiting full-duplex (FD) device-to-device (D2D) communications. To this end, we consider a scenario in which a common file is requested by a subset of users in different times and with different maximum tolerable delays. Moreover, a maximum specific bandwidth is dedicated for data transmission. In order to send the file in the specific bandwidth, we use multicasting alongside FD D2D communications. Thanks to the fact that users have different deadlines, we divide them into non-overlapping groups, i.e., coalitions, to receive the file in distinct intervals. In order to guarantee the tolerable delay of all users, a coalition... 

    Coupled lattice boltzmann - Discrete element method for numerical modelling of sand production

    , Article Particle-Based Methods II - Fundamentals and Applications, 26 October 2011 through 28 October 2011 ; 2011 , Pages 371-382 ; 9788489925670 (ISBN) Ghassemi, A ; Pak, A ; Sharif University of Technology
    Abstract
    In this study, a coupled numerical approach based on Lattice Boltzmann Method (LBM) and Discrete Element Method (DEM) is employed for 2D simulation of fluid flow in porous media comprising of movable circular particles. The developed model is used for simulation of sand production which is one of the important problems in petroleum industry. The numerical tool has proved to have the capability of investigating the mechanisms involved in sand production problem. The results show that the rate of sand production is strongly affected by flow rate and confining pressure  

    Contact time study of electrostatically actuated microsystems

    , Article Scientia Iranica ; Volume 17, Issue 5 B , SEPTEMBER-OCTOBER , 2010 , Pages 348-357 ; 10263098 (ISSN) Moghimi Zand, M ; Rashidian, B ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    This paper presents a model to analyze contact phenomenon in microsystems actuated by ramp voltages, which has applications in frequency sweeping. First-order shear deformation theory is used to model dynamical system using finite element method, while finite difference method is applied to model squeeze film damping. The model is validated by static pull-in results. The presented hybrid FEMFDM model is utilized to compute values of contact time and dynamic behavior. Considering this model, effects of different geometrical and mechanical parameters on contact time are studied. The influence of imposing the additional reverse voltage on dynamic characteristics of the system is also... 

    Congestion effect on maximum dynamic stresses of bridges

    , Article Structural Engineering and Mechanics ; Volume 55, Issue 1 , 2015 , Pages 111-135 ; 12254568 (ISSN) Samanipour, K ; Vafaia, H ; Sharif University of Technology
    Techno Press  2015
    Abstract
    Bridge behavior under passing traffic loads has been studied for the past 50 years. This paper presents how to model congestion on bridges and how the maximum dynamic stress of bridges change during the passing of moving vehicles. Most current research is based on mid-span dynamic effects due to traffic load and most bridge codes define a factor called the dynamic load allowance (DLA), which is applied to the maximum static moment under static loading. This paper presents an algorithm to solve the governing equation of the bridge as well as the equations of motions of two real European trucks with different speeds, simultaneously. It will be shown, considering congestion in eight case... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; Volume 40, Issue 2 , 2022 , Pages 233-242 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Computation of three-dimensional supersonic turbulent flows over wrap-around fin projectiles using personal computers

    , Article Scientia Iranica ; Volume 12, Issue 2 , 2005 , Pages 217-228 ; 10263098 (ISSN) Fazeli, H ; Azimi, A ; Farhanieh, B ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    The three-dimensional supersonic turbulent flows over wrap-around fin missiles have been computed using the Thin Layer Navier-Stokes (TLNS) equations to reduce the computational efforts compared to those of the Full Navier-Stokes (FNS) equations. In this research, the missile configuration is divided into multi regions to enable fluid flow simulation using Personal Computers (PC). It also makes it possible to use a different number of nodes and distribution of grids in each region to enhance the accuracy. The Thin Layer Navier-Stokes equations in the generalized coordinate system were solved using an efficient, implicit, finite-difference factored algorithm of the Beam and Warming. For the... 

    Computational simulation of marangoni convection under microgravity condition

    , Article Scientia Iranica ; Volume 16, Issue 6 B , 2009 , Pages 513-524 ; 10263098 (ISSN) Saidi, M. H ; Taeibi Rahni, M ; Asadi, B ; Ahmadi, G ; Sharif University of Technology
    2009
    Abstract
    In this work, the rising of a single bubble in a quiescent liquid under microgravity condition was simulated. In addition to general studies of microgravity effects, the initiation of hydrodynamic convection, solely due to the variations of interface curvature (surface tension force) and thus the generation of shearing forces at the interfaces, was also studied. Then, the variation of surface tension due to the temperature gradient (Marangoni convection), which can initiate the onset of convection even in the absence of buoyancy, was studied. The related unsteady incompressible full Navier-Stokes equations were solved using a finite difference method with a structured staggered grid. The... 

    Comparison of numerical formulations for Two-phase flow in porous media

    , Article Geotechnical and Geological Engineering ; Volume 28, Issue 4 , 2010 , Pages 373-389 ; 09603182 (ISSN) Ataie Ashtiani, B ; Raeesi Ardekani, D ; Sharif University of Technology
    2010
    Abstract
    Numerical approximation based on different forms of the governing partial differential equation can lead to significantly different results for two-phase flow in porous media. Selecting the proper primary variables is a critical step in efficiently modeling the highly nonlinear problem of multiphase subsurface flow. A comparison of various forms of numerical approximations for two-phase flow equations is performed in this work. Three forms of equations including the pressure-based, mixed pressure-saturation and modified pressure-saturation are examined. Each of these three highly nonlinear formulations is approximated using finite difference method and is linearized using both Picard and...