Loading...
Search for: finite-difference-methods
0.016 seconds
Total 169 records

    Comparison of finite difference schemes for water flow in unsaturated soils

    , Article World Academy of Science, Engineering and Technology ; Volume 40 , 2009 , Pages 21-25 ; 2010376X (ISSN) Taheri Shahraiyni, H ; Ataie Ashtiani, B ; Sharif University of Technology
    2009
    Abstract
    Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The... 

    Comparison between triangular and hexagonal modeling of a hexagonal-structured reactor core using box method

    , Article Annals of Nuclear Energy ; Volume 38, Issue 2-3 , February–March , 2011 , Pages 371-378 ; 03064549 (ISSN) Malmir, H ; Moghaddam, N. M ; Zahedinejad, E ; Sharif University of Technology
    2011
    Abstract
    A hexagonal-structured reactor core (e.g. VVER-type) is mostly modeled by structured triangular and hexagonal mesh zones. Although both the triangular and hexagonal models give good approximations over the neutronic calculation of the core, there are some differences between them that seem necessary to be clarified. For this purpose, the neutronic calculations of a hexagonal-structured reactor core have to be performed using the structured triangular and hexagonal meshes based on box method of discretisation and then the results of two models should be benchmarked in different cases. In this paper, the box method of discretisation is derived for triangular and hexagonal meshes. Then, two 2-D... 

    Comparing sloshing phenomena in a rectangular container with and without a porous medium using explicit nonlinear 2-D BEM-FDM

    , Article Scientia Iranica ; Volume 17, Issue 2 B , 2010 , Pages 93-101 ; 10263098 (ISSN) Abbaspour, M ; Ghodsi Hassanabad, M ; Sharif University of Technology
    2010
    Abstract
    The sloshing phenomena in a partially filled tank can affect its stability. Modifications of tank instability due to the movement of the tank carrier, are key design points for the stability of a carrier. Even though the sloshing phenomenon has already been investigated using the BEM-FDM technique, the research in this paper covers this phenomenon in a porous media, which is new in 2-D coordinates. For this purpose, a Laplace equation has been used for potential flow, and kinematic and dynamic boundary conditions have been applied to the free surface. Also, a formulation has been developed for a free surface in porous media. BEM has been used for solving the governing equation and FDM... 

    Characteristics of heat and mass transfer in vapor absorption of falling film flow on a horizontal tube

    , Article International Communications in Heat and Mass Transfer ; Volume 32, Issue 9 , 2005 , Pages 1253-1265 ; 07351933 (ISSN) Babadi, F ; Farhanieh, B ; Sharif University of Technology
    2005
    Abstract
    The absorber is an important component in absorption machines and its characteristics have significant effects on the overall efficiency of absorption machines. This article reports on the results of numerical studies on the characteristics of falling film LiBr-H2O solution on a completely wetted horizontal tube and the associated vapor absorption in the Reynolds number range of 5 < Re < 100. The boundary layer assumptions are used for the transport of mass, momentum and energy equations and the finite difference method is employed to solve the governing equations in the film flow. The heat and mass transfer coefficients are expressed in the forms of Reynolds number, Prandtl number and... 

    CFD-DEM simulation of the hole cleaning process in a deviated well drilling: the effects of particle shape

    , Article Particuology ; Volume 25 , 2016 , Pages 72-82 ; 16742001 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Abstract
    We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid-particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle-particle, particle-wall, and particle-drill pipe are taken into account with the Hertz-Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the... 

    BEM modeling of surface water wave motion with laminar boundary layers

    , Article Engineering Analysis with Boundary Elements ; Volume 30, Issue 1 , 2006 , Pages 14-21 ; 09557997 (ISSN) Jamali, M ; Sharif University of Technology
    2006
    Abstract
    This study is concerned with numerical modeling of viscous surface wave motion using boundary element method (BEM). The equations of motion for thin boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM-finite difference technique is used to obtain the viscosity-related quantities such as wave damping rate, shear stress, and velocity distribution inside the boundary layer. The technique is presented for standing surface wave motion. An excellent agreement is obtained between the numerical predictions and the previous results. The extension to other free surface problems is straightforward. © 2005 Elsevier Ltd. All rights reserved  

    A study on mutual interaction between atomistic and macroscopic phenomena during electrochemical processes using FD-KMC model: Application to CV test in simple copper sulfate bath

    , Article Journal of Electroanalytical Chemistry ; Volume 592, Issue 1 , 2006 , Pages 95-102 ; 15726657 (ISSN) Saedi, A ; Sharif University of Technology
    Elsevier  2006
    Abstract
    A multiscale FD-KMC model has been developed to simulate the cyclic voltammetry test of a copper electrode in simple copper sulfate bath. In this coupled model, the FD code provides the cupric ion concentration on OHP for KMC code, while the KMC code provides the electrochemical properties of the copper electrode (surface activity and rate constants of redox reactions) as an input data for FD code. The changes in the electrode properties due to the atomistic phenomena (deposition dissolution and surface diffusion) have been studied for the present potentiodynamic system. The results showed that the CV process consists of some distinct stages, so that the electrode exhibits a specific... 

    A study on mutual interaction between atomistic and macroscopic phenomena during electrochemical processes using coupled finite difference - Kinetic Monte Carlo model: Application to potential step test in simple copper sulfate bath

    , Article Journal of Electroanalytical Chemistry ; Volume 588, Issue 2 , 2006 , Pages 267-284 ; 15726657 (ISSN) Saedi, A ; Sharif University of Technology
    Elsevier  2006
    Abstract
    A novel method is used to link a 2D kinetic Monte Carlo code to a 1D finite difference code to construct a more realistic and efficient tool for simulating various electrochemical processes. This multiscale model is able to simulate the long-scale mass transfer of electroactive species in bath along with electrode surface phenomena at atomic scale simultaneously. An embedded atom method (EAM) has been used to evaluate the barrier energies of diffusion and redox reactions on electrode surface. The FD code provides the ion concentration on OHP for KMC code, while the KMC code provides the surface activity and rate constants of redox reactions as an input data for FD code. The electrochemical... 

    Assessment of characteristic boundary conditions based on the artificial compressibility method in generalized curvilinear coordinates for solution of the Euler equations

    , Article Computational Methods in Applied Mathematics ; Volume 18, Issue 4 , 2018 , Pages 717-740 ; 16094840 (ISSN) Parseh, K ; Hejranfar, K ; Sharif University of Technology
    De Gruyter  2018
    Abstract
    The characteristic boundary conditions are applied and assessed for the solution of incompressible inviscid flows. The two-dimensional incompressible Euler equations based on the artificial compressibility method are considered and then the characteristic boundary conditions are formulated in the generalized curvilinear coordinates and implemented on both the far-field and wall boundaries. A fourth-order compact finite-difference scheme is used to discretize the resulting system of equations. The solution methodology adopted is more suitable for this assessment because the Euler equations and the high-accurate numerical scheme applied are quite sensitive to the treatment of boundary... 

    Assessment of characteristic boundary conditions based on the artificial compressibility method in generalized curvilinear coordinates for solution of the euler equations

    , Article Computational Methods in Applied Mathematics ; 2017 ; 16094840 (ISSN) Parseh, K ; Hejranfar, K ; Sharif University of Technology
    Abstract
    The characteristic boundary conditions are applied and assessed for the solution of incompressible inviscid flows. The two-dimensional incompressible Euler equations based on the artificial compressibility method are considered and then the characteristic boundary conditions are formulated in the generalized curvilinear coordinates and implemented on both the far-field and wall boundaries. A fourth-order compact finite-difference scheme is used to discretize the resulting system of equations. The solution methodology adopted is more suitable for this assessment because the Euler equations and the high-accurate numerical scheme applied are quite sensitive to the treatment of boundary... 

    A robust short-circuit fault diagnosis for high voltage DC power supply based on multisensor data fusion

    , Article 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, 12 February 2019 through 14 February 2019 ; 2019 , Pages 659-664 ; 9781538692547 (ISBN) Ayoubi, R ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Short-circuit fault (SCF) detection is mandatory in a high voltage DC power supply (HVPS) to prevent fatal damage. The majority of converters employ a single sensor to detect the SCF. This attribute increases the interference vulnerability of the fault detection (FD) system in the presence of noise. Therefore, miss detections and false alarms are possible to occur. Miss detections and false alarms are harmful catastrophes in most applications. A commonly used method to suppress the noise impacts is using a low-bandwidth low-pass filter. However, the use of the low-bandwidth low-pass filter reduces the speed of FD due to the filter delay. This paper proposes a fast FD algorithm based on... 

    Application of a preconditioned high-order accurate artificial compressibility-based incompressible flow solver in wide range of Reynolds numbers

    , Article International Journal for Numerical Methods in Fluids ; Volume 86, Issue 1 , 2018 , Pages 46-77 ; 02712091 (ISSN) Hejranfar, K ; Parseh, K ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In the present study, the preconditioned incompressible Navier-Stokes equations with the artificial compressibility method formulated in the generalized curvilinear coordinates are numerically solved by using a high-order compact finite-difference scheme for accurately and efficiently computing the incompressible flows in a wide range of Reynolds numbers. A fourth-order compact finite-difference scheme is utilized to accurately discretize the spatial derivative terms of the governing equations, and the time integration is carried out based on the dual time-stepping method. The capability of the proposed solution methodology for the computations of the steady and unsteady incompressible... 

    A numerical study on the absorption of water vapor into a film of aqueous LiBr falling along a vertical plate

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 46, Issue 2 , 2009 , Pages 197-207 ; 09477411 (ISSN) Karami, S ; Farhanieh, B ; Sharif University of Technology
    Abstract
    Absorber is an important component in absorption machines and its characteristics have significant effects on the overall efficiency of absorption machines. This article reports a model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water - cooled vertical plate absorber in the Reynolds number range of 5 < Re < 150. The boundary layer assumptions were used for the transport of mass, momentum and energy equations and the fully implicit finite difference method was employed to solve the governing equations in the film flow. Dependence of lithium bromide aqueous properties to the temperature and concentration and film... 

    A numerical study on fluid flow and acoustic characteristics of a supersonic impinging jet using vorticity confinement

    , Article Acta Acustica united with Acustica ; Volume 105, Issue 6 , 2019 , Pages 1127-1136 ; 16101928 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    S. Hirzel Verlag GmbH  2019
    Abstract
    The objective of this work is to numerically study the fluid flow and acoustic field of a supersonic impinging jet by applying the vorticity confinement (VC) method. For this aim, the three-dimensional compressible Navier-Stokes equations with the incorporation of the VC method are considered and the resulting system of equations is solved by using the sixth-order compact finite-difference scheme. To eliminate the numerical instability, a low-pass high-order filter is used. The nonreflective boundary conditions are applied for all the free boundaries and the radiated sound field is obtained by the Kirchhoff surface integration. Comparisons of the present results with the experimental data... 

    A numerical study on fluid flow and acoustic characteristics of a supersonic impinging jet using vorticity confinement

    , Article Acta Acustica united with Acustica ; Volume 105, Issue 6 , 2019 , Pages 1127-1136 ; 16101928 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    S. Hirzel Verlag GmbH  2019
    Abstract
    The objective of this work is to numerically study the fluid flow and acoustic field of a supersonic impinging jet by applying the vorticity confinement (VC) method. For this aim, the three-dimensional compressible Navier-Stokes equations with the incorporation of the VC method are considered and the resulting system of equations is solved by using the sixth-order compact finite-difference scheme. To eliminate the numerical instability, a low-pass high-order filter is used. The nonreflective boundary conditions are applied for all the free boundaries and the radiated sound field is obtained by the Kirchhoff surface integration. Comparisons of the present results with the experimental data... 

    A novel numerical solution to the diffraction term in the KZK nonlinear wave equation

    , Article Proceedings of the 38th Annual Symposium of Ultrasonic Industry Association, UIA 2009, 23 March 2009 through 25 March 2009, Vancouver, BC ; 2009 ; 9781424464296 (ISBN) Hajihasani, M ; Farjami, Y ; Gharibzadeh, S ; Tavakkoli, J ; Sharif University of Technology
    Abstract
    Nonlinear ultrasound modeling is finding an increasing number of applications in both medical and industrial areas where due to high pressure amplitudes the effects of nonlinear propagation are no longer negligible. Taking nonlinear effects into account makes the ultrasound beam analysis more accurate in these applications. One of the most widely used nonlinear models for propagation of 3D diffractive sound beams in dissipative media is the KZK (Khokhlov, Kuznetsov, Zabolotskaya) parabolic nonlinear wave equation. Various numerical algorithms have been developed to solve the KZK equation. Generally, these algorithms fall into one of three main categories: frequency domain, time domain and... 

    An optimized large-stencil approach for capturing near-PI frequencies

    , Article 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, 8 May 2006 through 10 May 2006 ; Volume 5 , 2006 , Pages 3010-3022 ; 1563478099 (ISBN); 9781563478093 (ISBN) Ghasemi, A ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2006
    Abstract
    Large-stencil schemes which their spectral properties are acceptable in the vicinity of ω = π are analyzed for the first time. A machine independent model for evaluating the efficiency of generalized time-marching finite-difference algorithms over periodic domains is developed. This model which is based on operation count reveals that for small values of Total Computational Cost(TCC), the previous low-order small-stencil schemes are more efficient while for moderate TCC, the efficiency of optimized large-stencil schemes abruptly increases. This important result is the motivation for developing optimized large-stencil schemes. The current schemes are successfully implemented in a full... 

    An experimental-based numerical simulation of two phase flow through porous media: A comparative study on finite element and finite difference schemes

    , Article Petroleum Science and Technology ; Volume 31, Issue 18 , 2013 , Pages 1881-1890 ; 10916466 (ISSN) Tavakkoli, M ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    2013
    Abstract
    In this study, the nonlinear partial differential equations governing two phase flow through porous media are solved using two different methods, namely, finite difference and finite element. The capillary pressure term is considered in the mathematical model. The numerical results on a 2-D test case are then compared with the experimental drainage process and water flooding performed on a glass type micromodel. Based on the obtained results, finite difference technique needs less computational time for solving governing equations of two phase flow, but findings of this method show less agreement with the experimental data. The finite element scheme was found to be more adequate and its... 

    A new parallel Gauss-Seidel method based on alternating group explicit method and domain decomposition method

    , Article Applied Mathematics and Computation ; Volume 188, Issue 1 , 2007 , Pages 713-719 ; 00963003 (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2007
    Abstract
    A new parallel Gauss-Seidel method is presented for solution of system of linear equations related to finite difference discretization of partial differential equations. This method is based on domain decomposition method and local coupling between interfaces of neighbor sub-domains, same as alternating group explicit method. This method is convergent and number of iterations for achieving convergence criteria is near the original Gauss-Seidel method (sometimes better and sometimes worse but difference is very small). The convergence theory is discussed in details. Numerical results are given to justify the convergence and performance of the proposed iterative method. © 2006 Elsevier Inc.... 

    An approximated solution to the 2D incompressible Navier-Stokes equations via Adomian Decomposition Method

    , Article WSEAS Transactions on Mathematics ; Volume 5, Issue 7 , 2006 , Pages 878-885 ; 11092769 (ISSN) Najafi, M ; Taeibi Rahni, M ; Aavani, K ; Sharif University of Technology
    2006
    Abstract
    The Adomian Decomposition Method (ADM) for solving the highly non-linear vorticity-stream function formulation of 2D incompressible Navier-Stokes equations has been implemented. The analysis is accompanied by numerical boundary conditions. Also, numerical simulation, using finite difference method (FDM), is performed for comparison purposes. The obtained results only for few terms of the expansion are presented. Because present software such as Mathematica/Maple can not calculate many terms (for example: up to 10 terms) of solution and then ADM approach of this problem is an open problem case