Loading...
Search for: finite-element-model
0.014 seconds
Total 193 records

    Excavation plan and preliminary support design of an underground control room using 3D analysis in soft and weathered rocks

    , Article 6th European Conference on Numerical Methods in Geotechnical Engineering - Numerical Methods in Geotechnical Engineering, Graz, 6 September 2006 through 8 September 2006 ; 2006 , Pages 359-365 ; 0415408229 (ISBN); 9780415408226 (ISBN) Vahedi Fard, F ; Talebi, M ; Jafarzadeh, F ; Dianat Nejad, M ; Sharif University of Technology
    Taylor and Francis/ Balkema  2006
    Abstract
    In this paper, proper and safe planning of excavation method and design of support system in very weak rocks with case study of control room of Silveh dam are discussed. Silveh earth-storage dam, with 102 m height; is under construction in North-West of Iran. Due to numerous and various tectonic occurrences, the area of dam site is known as a high activity zone of Iran. In purposed location of control room, bedrock contains mostly weathered and crushed Shale and Schist. 60 m overburden and finite aquifers are another specific concern of this project. In this paper by using 3D finite element modeling, different stages of excavation and support system installation have been analyzed for the... 

    Effect of seismic wave propagation in massed medium on rate-dependent anisotropic damage growth in concrete gravity dams

    , Article Frontiers of Structural and Civil Engineering ; Volume 15, Issue 2 , 2021 , Pages 346-363 ; 20952430 (ISSN) Daneshyar, A ; Mohammadnezhad, H ; Ghaemian, M ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    Seismic modeling of massive structures requires special caution, as wave propagation effects significantly affect the responses. This becomes more crucial when the path-dependent behavior of the material is considered. The coexistence of these conditions renders numerical earthquake analysis of concrete dams challenging. Herein, a finite element model for a comprehensive nonlinear seismic simulation of concrete gravity dams, including realistic soil-structure interactions, is introduced. A semi-infinite medium is formulated based on the domain reduction method in conjunction with standard viscous boundaries. Accurate representation of radiation damping in a half-space medium and wave... 

    Structural performance assessment of large unstiffened openings in steel plate shear walls

    , Article Engineering Structures ; Volume 247 , 2021 ; 01410296 (ISSN) Darvishi, H ; Mofid, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The latest research studies on Steel Plate Shear Walls (SPSWs) suggest that the use of large-sized openings in infill plates calls for the use of heavy stiffeners or special measures for ensuring system stability. This study explores the effect of introduction of large unstiffened openings in SPSWs. A number of single story SPSWs with solid infill plates and their corresponding models with unstiffened openings are designed and analyzed numerically. In addition, this study provides a comparison of the experimental and numerical results obtained from the finite element models of SPSWs with openings. The results indicate the acceptable behavior of the specimens even at high levels of drift in... 

    A comprehensive approach for the validation of lumbar spine finite element models investigating post-fusion adjacent segment effects

    , Article Journal of Biomechanics ; Volume 121 , 2021 ; 00219290 (ISSN) Azadi, A ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Spinal fusion surgery is usually followed by accelerated degenerative changes in the unfused segments above and below the treated segment(s), i.e., adjacent segment disease (ASD). While a number of risk factors for ASD have been suggested, its exact pathogenesis remains to be identified. Finite element (FE) models are indispensable tools to investigate mechanical effects of fusion surgeries on post-fusion changes in the adjacent segment kinematics and kinetics. Existing modeling studies validate only their intact FE model against in vitro data and subsequently simulate post-fusion in vivo conditions. The present study provides a novel approach for the comprehensive validation of a lumbar... 

    Search for critical loading condition of the spine-A meta analysis of a nonlinear viscoelastic finite element model

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 8, Issue 5 , 2005 , Pages 323-330 ; 10255842 (ISSN) Wang, J. L ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2005
    Abstract
    The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2-L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix... 

    A mathematical model for evolution of flow stress during hot deformation

    , Article Materials Letters ; Volume 59, Issue 26 , 2005 , Pages 3319-3324 ; 0167577X (ISSN) Serajzadeh, S ; Sharif University of Technology
    2005
    Abstract
    A mathematical model has been proposed to predict flow behavior of steel under hot deformation conditions with regard to the effects of dynamic recovery and dynamic recrystallization. For this purpose, Kocks-Mecking dislocation model together with a first order rate equation have been utilized. To associate temperature and strain rate variations on flow behavior of deforming metal, a thermo-viscoplastic finite element model has been coupled with the proposed model. To verify the modeling results, hot rolling experiments were performed and roll forces at various temperatures and rolling speeds were recorded. A good agreement was found between the predicted and the experimental data. © 2005... 

    An integrated software environment for finite element simulation of powder compaction processes

    , Article Journal of Materials Processing Technology ; Volume 130-131 , 2002 , Pages 168-174 ; 09240136 (ISSN) Khoei, A. R ; Sharif University of Technology
    2002
    Abstract
    In this paper, an integrated software environment is demonstrated for computational simulation of powder forming processes. The powder compaction software, PCS_SUT, is designed in both popularity and functionality with the development of user-friendly pre- and post-processing software. Pre-processing software is used to create the model, generate an appropriate finite element grid, apply the appropriate boundary conditions, and view the total model. Post-processing provides visualization of the computed results. In PCS_SUT, a numerical model is developed based on a Lagrangian finite element formulation for large deformations, a cap plasticity theory for non-linear behaviour of material, and... 

    Muscle force evaluation and the role of posture in human lumbar spine under compression

    , Article European Spine Journal ; Volume 11, Issue 6 , 2002 , Pages 519-526 ; 09406719 (ISSN) Shirazi Adl, A ; Sadouk, S ; Parnianpour, M ; Pop, D ; El-Rich, M ; Sharif University of Technology
    2002
    Abstract
    Using two nonlinear finite element models of the lumbar spine, the concept of optimal posture is explored by minimizing the segmental sagittal moments required for the equilibrium of the passive lumbar spine under a total of 2800 N axial compression while varying the pelvic tilt and lumbar lordosis. The redundant active-passive system is subsequently solved for this posture using a novel kinematics-based muscle calculation algorithm along with minimization approach. Some flattening in the lumbar spine substantially reduces the required moments and internal passive shear forces under 2800 N axial compression force. Small muscle forces are calculated for this optimal posture. The role of... 

    Adjacent segments biomechanics following lumbar fusion surgery: a musculoskeletal finite element model study

    , Article European Spine Journal ; Volume 31, Issue 7 , 2022 , Pages 1630-1639 ; 09406719 (ISSN) Ebrahimkhani, M ; Arjmand, N ; Shirazi-Adl, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Purpose: This study exploits a novel musculoskeletal finite element (MS-FE) spine model to evaluate the post-fusion (L4–L5) alterations in adjacent segment kinetics. Methods: Unlike the existing MS models with idealized representation of spinal joints, this model predicts stress/strain distributions in all passive tissues while organically coupled to a MS model. This generic (in terms of musculature and material properties) model uses population-based in vivo vertebral sagittal rotations, gravity loads, and an optimization algorithm to calculate muscle forces. Simulations represent individuals with an intact L4–L5, a preoperative severely degenerated L4–L5 (by reducing the disc height by ~... 

    Shaking table test for assessing the seismic performance of semi-anchored steel water tanks

    , Article Thin-Walled Structures ; Volume 176 , 2022 ; 02638231 (ISSN) Tavasoli, S ; Shahrouz Sotudeh, A ; Bakhshi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The seismic responses of steel water tanks are unconventional given their complex dynamic behavior and the sources of nonlinearity. Therefore, providing a reliable, finite-element model is instrumental in better understanding their dynamic behavior and improving the design conditions. This paper aims to evaluate the seismic performance of steel water tanks using shaking table tests and provide a finite-element reference model for simulating real-size, semi-anchored water tanks by conducting a series of large-scale tests in the Shaking Table Lab of the Sharif University of Technology (SUT). Since scaling the tank requires a difficult process involving changing the liquid density, this paper... 

    Novel force–displacement control passive finite element models of the spine to simulate intact and pathological conditions; comparisons with traditional passive and detailed musculoskeletal models

    , Article Journal of Biomechanics ; Volume 141 , 2022 ; 00219290 (ISSN) Abbasi-Ghiri, A ; Ebrahimkhani, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Passive finite element (FE) models of the spine are commonly used to simulate intact and various pre- and postoperative pathological conditions. Being devoid of muscles, these traditional models are driven by simplistic loading scenarios, e.g., a constant moment and compressive follower load (FL) that do not properly mimic the complex in vivo loading condition under muscle exertions. We aim to develop novel passive FE models that are driven by more realistic yet simple loading scenarios, i.e., in vivo vertebral rotations and pathological-condition dependent FLs (estimated based on detailed musculoskeletal finite element (MS-FE) models). In these novel force–displacement control FE models,... 

    A comprehensive 2 Dimensional and 3 Dimensional FEM study of scarf repair for a variety of common composite laminates under in-plane uniaxial and equibiaxial loadings

    , Article International Journal of Adhesion and Adhesives ; Volume 114 , 2022 ; 01437496 (ISSN) Tashi, S ; Abedian, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Due to their potential to recover strength and stiffness with a minimum impact on aerodynamic performance of a damaged structure, scarf repairs are boosted as a viable repair option for primary aero-structures. So far, most of the experimental and numerical studies have been limited to joint specimens and their equivalent 2 Dimensional models and a few number of studies attempted to examine the results using real scarf repair geometry. Suggestions previously made to justify the difference between scarf joint and scarf repair strength and possible solution to diminish the difference are challenged in current work. Here, it is tried to investigate the strengths and shortcomings of 2D scarf... 

    Thermal analysis of RCC dams during construction considering different ambient boundary conditions at the upstream and downstream faces

    , Article Journal of Civil Structural Health Monitoring ; Volume 12, Issue 3 , 2022 , Pages 487-500 ; 21905452 (ISSN) Pouya, M. R ; Sohrabi Gilani, M ; Ghaemian, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Thermal analysis of Roller Compacted Concrete (RCC) dams is generally carried out considering identical ambient boundary conditions at upstream and downstream faces. For the case of Shahri-Kor Dam (an RCC dam with a height of 57 m), recorded thermal data depicts a considerable difference between upstream and downstream ambient temperatures, especially during cold months. This paper investigates how taking this difference into account can affect the thermal response of the dam. For this purpose, two thermal analyses are carried out with and without consideration of these different ambient boundary conditions (DABC). Consequently, the computed temperatures at representative points are compared...