Loading...
Search for: finite-element-model
0.011 seconds
Total 193 records

    A Detailed Finite Element Model of the L4-L5 Motion Segmentwhile Considering Trunk Muscle Forces

    , M.Sc. Thesis Sharif University of Technology Rahimi Moghaddam, Turan (Author) ; Arjmand, Navid (Supervisor) ; Parnianpour, Mohamad (Supervisor)
    Abstract
    The main task of the spine from the mechanical point of view, withstand external loads and allow the upper body movements. Hence, as the chief cause of back pain are mechanical parameters. Inability to directly measure the forces acting on the spine as in vivo, further brings us to the use of computer models in various branches of orthopedic biomechanics leads.
    The purpose of this project in the first place) to make a detailed finite element model of the L4-L5 spinal motion but, in the second place) loads imposed on it except move in a certain physical activities, taking into account the forces acting muscles (calculated by a musculoskeletal model is available) under which they operate,... 

    Numerical Study of Two Novel Metallic Dampers with Torsional Mechanism

    , M.Sc. Thesis Sharif University of Technology Khalooei, Shayan (Author) ; Mohtashm Dolatshahi, Kiarash (Supervisor)
    Abstract
    The aim of this study is introducing and assessing two torsion-based metallic dampers which are named Torsional Disc and Torsional Cylinder dampers based on their geometry and energy absorption mechanisms. As expected, a steel disc and a steel cylinder are exposed to torsion in the Torsional Disc and Torsional Cylinder dampers respectively, and energy absorption occurs through torsional yielding of those two elements. In the introduction section, a mechanism is introduced to put the dampers under pure torsion so as to yield a desirable performance. The dampers are designed to be placed between Chevron braces and the floor beam, and the pure torsion is exerted, through the mentioned... 

    Value-based Seismic Performance Assessment of Common Masonry Facades in Iran

    , M.Sc. Thesis Sharif University of Technology Khalili, Mohammad Reza (Author) ; Esmaeil Purestekanchi, Homayoon (Supervisor)
    Abstract
    Financial losses and casualties due to the collapse of the masonry facade and the infill walls of the building in recent earthquakes were motivators of this research to study seismic performance assessment of masonry facade. One of the main reasons for the collapse of buildings facade is their inadequate connection to the infill walls and structure frame. The mentioned item caused when earthquakes such as Kermanshah earthquake occurred, although a large number of buildings remained undamaged in terms of their structural, facades of these buildings collapsed. The details of the masonry facade, such as the metal wires mentioned in the codes, are not usually applied in Iran, and the connection... 

    Estimation of Spinal Loads in Static Activities by Considering Trunk Muscle Forces in a Detailed Nonlinear Finite Element Model

    , Ph.D. Dissertation Sharif University of Technology Khodam Khorasani, Pooria (Author) ; Arjmand, Navid (Supervisor) ; Shirazi-Adl, Aboulfazl (Co-Supervisor)
    Abstract
    Spine biomechanical models suffers from either simplification in passive disc components modeling (modeling via torsional spring or beam elements) in musculoskeletal (MS) models or shortcomings in detailed muscles modeling (via a simple force and torque vector) in detailed finite element (FE) models. Considering these, that is aimed in this study to develop a hybrid MS-FE model which the calculated muscle forces by a MS model (developed based on geometrical and mechanical properties of FE model) for a desired static posture, being applied to a detailed FE model. Considering the change of discs stiffness in FE model under the applied muscles and gravity forces, the equivalent stiffness in MS... 

    Modeling of Different Geometries of Children's Heart Occluder's by Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Mousavizadeh, Mohammad Hossein (Author) ; Arghavani, Jamal (Supervisor)
    Abstract
    Congenital heart defects are a type of heart diseases that some babies get at birth. These diseases generally have symptoms such as shortness of breath, headache, impaired blood supply, hyperplasia of the lungs, enlarged heart, and so on. In the past, open heart surgery was commonly used to treat such diseases, which was a costly and risky procedure. But over time, occluders made it easier. An occluder is referd to a device that is generally minimally invasive in the area of the fault and could block it. The occluders are usually braided type, with inside polyethylene fibers, where tissues can grow and clogs the defect over time. Although occluders have greatly increased the success rate of... 

    Predicting the Fatigue Life of Repaired Specimens by Composite Patch Exposed to Corrosive Environments Using Artificial Neural Network and Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Bakhshiyan, Amir Hossein (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    In this research, the application of composite patch in the repair of pipes damaged by corrosion has been investigated. Numerical modeling, artificial neural network and Taguchi algorithm are used for this purpose. In the numerical modeling section, the accuracy of modeling performance has been verified by experimental results of other researchers. Then, the effect of various parameters such as depth and, angle of corroded area, fiber orientation in the composite patch and angle of composite patch have been investigated. The depth and the angle of the corroded area and the angle of orientation of the fiber have been shown to have a large effect on the growth life of fatigue cracks. For... 

    Seismic Performance Assessment of Historical Structures and Presenting their Seismic Rehabilitation Plan ; a Case Study : Soltanieh Dome

    , M.Sc. Thesis Sharif University of Technology Asgari, Pouya (Author) ; Bakhshi, Ali (Supervisor)
    Abstract
    Preservation of historical monuments is a very important issue for future generations. The importance of this issue is doubled when we know that most of these buildings are traditionally built and do not have a single structure to withstand seismic loads. One of such buildings in our country is Bam Citadel, which was completely destroyed as the oldest brick building in the world during the 2003 Bam earthquake.In this project, we will try to find a model that can determine the structural behavior of the historical dome of Soltanieh for engineers in a case study. This building is a brick dome with a height of 48.5 meters and a diameter of 24.4 meters from the seventh century , which is unique... 

    Design and Modelling of a Piezoelectric Accelerometer and Fabricating a Single Axis Accelerometer Prototype

    , M.Sc. Thesis Sharif University of Technology Ghorbani, Mohamad (Author) ; Vossoughi Vahdat, Gholamreza (Supervisor) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Nowadays, in many of industrial processes, it’s necessary to measure acceleration of a moving object. Among the different type of accelerometers, the piezoelectric type are most useful and the most widely used. These sensors come in various configurations.
    In the past, analytical and semi-empirical models have been used to design piezoelectric accelerometers. In these methods, based on some assumptions, the accelerometer nonlinear model is replaced with a linear model and the equivalent circuit model has been used to model accelerometer behavior. In these methods, the behavior of accelerometer become different from the expected one.
    Recently, with the invention of efficient computing... 

    Traumatic Brain Injury at Cellular Level by Using Multi-scale Modelling in Comparison with Clinical Data

    , M.Sc. Thesis Sharif University of Technology Hoursan, Hesam (Author) ; Farahmand, Farzam (Supervisor) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    This study aims to provide a multiscale model of traumatic brain injury including the three levels of macro, meso, and microscale information. In order to do this, a macroscale voxel-baed model of human head was constructed. The model was designed and generated to include mesoscale tissue information as well as a voxel-based approach to include voxel-based microscale data and to be coupled in a multiscale framework. Next, three different microscale models were constructed. The variations of fractional anisotropy within one standard deviation in the regions (including 60% to 70% of voxels) can change the stiffness of the tissue by up to the considerable amount of 40%. The microscale models... 

    Effects of Spinal Fusion Surgery on the Kinetics of Adjacent Segments, Using Medical Imaging and Finite Element Modeling; Comparison with Musculoskeletal Model

    , M.Sc. Thesis Sharif University of Technology Abbasi Ghiri, Alireza (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Passive finite element (FE) models of the spine are commonly used to simulate intact and various pre- and postoperative pathological conditions. Being devoid of muscles, these traditional passive FE models are driven by simplistic loading scenarios, e.g., a constant moment and compressive follower load (FL) that do not properly mimic the complex in vivo loading condition of the spine under muscle exertions. The present works therefore aims to develop novel passive FE models that are driven by more realistic yet simple loading scenarios, i.e., in vivo measured vertebral rotations and pathological-condition dependent FLs (estimated based on detailed musculoskeletal finite element (MS-FE) spine... 

    Investigation of Strength and Rotation Capacity of Box Column

    , M.Sc. Thesis Sharif University of Technology Jalali, Reza (Author) ; Moghaddam, Hassan (Supervisor)
    Abstract
    In this study, the behavior of box column subjected to constant axial load with cyclic lateral force have been investigated by Finite Element method. The resulf of FE anslysis are in a good agreement with experimental result in predicting of behavior and performance of box column. In order to investigation of behavior uses of some performance indices such as axial shortening, over strength, plastic hinge length, out of plane deformation and rotation capacity. The effect of significant parameter such as axial force to yield strength ratio, flange whidth to thickness ratio of flange, web whith to thickness ratio of web, global slenderness ratio and loading protocol on performance indices have... 

    Performance of Unbonded Post-Tensioned Concrete Slab Subjected to Temperature Variations

    , M.Sc. Thesis Sharif University of Technology Erfani, Ali (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Tests have shown that concrete post-tensioned slab under heat condition suffer a significant reduction in stiffness and strength. Design and implementation of post-tensioned concrete slabs with large spans of industrial structures exposed to extreme variation in temperature can be possible with detailed research on its behavior under heating condition. In this study numerical modelling of PT concrete slabs with unbonded tendons under heating condition was created based on available test results in the literature. A parametric study has been carried out and the results are presented for concrete coefficient thermal expansion, thermal contact conductance between the concrete and the cables,... 

    Optimizing Vibrations and Noise Emitted from the Gearbox Shell by Optimizing its Geometry

    , M.Sc. Thesis Sharif University of Technology Oboodizadeh, Mohammad Amin (Author) ; Saadat Foumani, Mahmud (Supervisor)
    Abstract
    Gearbox is one of the important components of power transmission chain in the car which the engagement of the gears inside it causes noise. The following thesis, is in line with the project that was defined as "NVH reduction of the Tiba X200 gearbox" and to increase the correlation between university and industry, the aim of which was to improve all the noise sources in the mentioned vehicle. The purpose of this project is to reduce the noise of the gearbox shell by using reinforcing blades called ribs. For this purpose, first the desired changes were made in Solidworks software on the 3D model of the gearbox shell, and then the finite element model of the gearbox shell was prepared in... 

    Biomechanical Analysis of the Effects of L4-L5 Fusion Surgery on Adjacent Segments Using Musculoskeletal and Finite Element Modeling

    , Ph.D. Dissertation Sharif University of Technology Ebrahimkhani, Mahdi (Author) ; Arjmand, Navid (Supervisor) ; Shirazi Adl, Aboulfazl (Co-Supervisor)
    Abstract
    Background: Degeneration of intervertebral joints due to kinetical alterations after fusion surgery is a prevalent back disorder. While in-vivo studies are limited to medical imaging techniques, in-vitro and in-silico (passive FE modeling) investigations lack the crucial role of muscle forces. Available musculoskeletal modeling studies, not only suffer oversimplification of intervertebral joints, but have some shortcomings in incorporation of the contributing factors (that may alter postoperative kinetics). On the other hand, one of the main shortcomings in the available musculoskeletal models is their inability to account for dynamic effects and modeling transient events. Purpose: 1-... 

    Finite Element Modeling and Additive Manufacturing of Meta-Material Bone Implants with Shape Memory Properties

    , M.Sc. Thesis Sharif University of Technology Jalali, Mojtaba (Author) ; Movahhedy, Mohammad Reza (Supervisor) ; Mohammadi, Kaivan (Co-Supervisor)
    Abstract
    Millions of people due to factors such as osteoporosis, aging, sports incidents, and accidents face complications from bone fracture injuries every year. Nitinol shape memory alloy and Gyroid metamaterial have attracted researchers to use them as suitable replacements to fill empty areas of broken bones. In this research, numerical modeling and additive manufacturing were used to take advantage of the special properties of both nitinol and gyroid structures. In the modeling section, finite element modeling of the superelastic effect and the one-way shape memory effect of sheet and solid gyroids in cubic and cylindrical geometries with different porosities were done. As a result of the... 

    Evaluating The Effects Of Anatomical Variations In An Equilibrium Finite Element Model Of Lumbar Employing The Monte Carlo Simulation

    , M.Sc. Thesis Sharif University of Technology Komeilizadeh, Koushiar (Author) ; Parnianpour, Mohamad (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    Spinal Column is one of the most important parts of musculoskeletal system. Injuries in this region are so rampant and causing vast expense. Risk factors related to spine injuries included personal related ones such as, age, sex, muscles’ strength and career related ones such as body positions at work place and loads. Since in vivo measurements have many restrictions, developing biomechanical models that simulate the response of a person to given loads and conditions has important role in preventing injuries and improving working conditions. Inputs to current models of the spine are considered to have mean value, therefore muscles’ forces and other outputs of these models have single value... 

    Structural Health Monitoring Using Optimal Finite Element Model Based on Digital Image Correlation

    , M.Sc. Thesis Sharif University of Technology Amir Hossein Amir Ahmadi (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The purpose of this research is to monitor the health of structures using the updated finite element model, in which digital images are used to optimize the numerical model. Structural Health Monitoring (SHM) is always an important and significant issue that has attracted the attention of many researchers in recent years. In general, some researches have been conducted in this field using physical sensors that provide discrete data to the system for analysis. Using cameras to monitor the structure makes it possible to extract continuous and integrated data from the structure using digital images, which is a significant advantage compared to physical sensors.In this research, a steel... 

    Damage Detection and Localization in Structures using Sensitivity of Power Spectral Density Obtained from Dynamic Data and Inverse Vibrations

    , M.Sc. Thesis Sharif University of Technology Soltanzadeh, Farzaneh (Author) ; Bakhshi, Ali (Supervisor)
    Abstract
    In this dissertation, the location and severity of the damage are obtained using a new robust Power Spectral Density (PSD) sensitivity-based model updating method. PSD of structural response is highly sensitive metric to parameter change and provides vast information about the structure. The proposed damage detection method uses the sensitivities of measured responses in frequency domain, for FE model updating in an efficient way, by developing a quasi-linear sensitivity equation of structural response. The system of equations are solved using Least Square method. Only stiffness parameters were updated through model updating and change in mass parameters were neglected. In this study, proper... 

    A Comprehensive Approach for the Validation of Lumbar Spine Finite Element Models Investigating Post-Fusion Adjacent Segment Effects

    , M.Sc. Thesis Sharif University of Technology Azadi, Amir Hossein (Author) ; Arjomand, Navid (Supervisor)
    Abstract
    Spinal fusion surgery is usually followed by accelerated degenerative changes in the unfused segments above and below the treated segment(s), i.e., adjacent segment disease (ASD). While a number of risk factors for ASD have been suggested, its exact pathogenesis remains to be identified. Finite element (FE) models are indispensable tools to investigate mechanical effects of fusion surgeries on post-fusion changes in the adjacent segment kinematics and kinetics. Existing modeling studies validate only their intact FE model against in vitro data and subsequently simulate post-fusion in vivo conditions. The present study provides a novel approach for the comprehensive validation of a lumbar... 

    Biophysical implications of lipid bilayer rheometry for mechanosensitive channels

    , Article Proceedings of the National Academy of Sciences of the United States of America ; Vol. 111, Issue. 38 , 2014 , Pages 13864-13869 Bavi, N ; Nakayama, Y ; Bavi, O ; Cox, C. D ; Qin, Q. H ; Martinac, B ; Sharif University of Technology
    Abstract
    The lipid bilayer plays a crucial role in gating of mechanosensitive (MS) channels. Hence it is imperative to elucidate the rheological properties of lipid membranes. Herein we introduce a framework to characterize the mechanical properties of lipid bilayers by combining micropipette aspiration (MA) with theoretical modeling. Our results reveal that excised liposome patch fluorometry is superior to traditional cell-attached MA for measuring the intrinsic mechanical properties of lipid bilayers. The computational results also indicate that unlike the uniform bilayer tension estimated by Laplace's law, bilayer tension is not uniform across the membrane patch area. Instead, the highest tension...