Loading...
Search for: finite-volume-method
0.013 seconds

    New hybrid finite volume-thermal lattice Boltzmann method, based on multi relaxation time collision operator

    , Article International Journal of Heat and Mass Transfer ; Volume 138 , 2019 , Pages 1281-1294 ; 00179310 (ISSN) Salimi, M. R ; Alizadeh Seresht, E ; Taeibi Rahni, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Hybrid FVM-LBM schemes are developed in the past few years to use capabilities of both Navier-Stokes based finite volume method (FVM) and lattice Boltzmann method (LBM) to solve macro-meso multiscale problems. In this scheme, the major task is to develop some lifting relations that reconstruct distribution functions in LBM sub-domain from macroscopic variables and their derivatives. The macroscopic variables are computed using Navier-Stokes based FVM in macroscale sub-domain, while distribution functions are computed using LBM in mesoscale sub-domain. The pioneer works in this area used the single relaxation time (SRT) version of LBM. However, it is known that the numerical stability and... 

    Numerical investigation of turbulent Cu-water nanofluid in heat exchanger tube equipped with perforated conical rings

    , Article Advanced Powder Technology ; Volume 30, Issue 7 , 2019 , Pages 1338-1347 ; 09218831 (ISSN) Nakhchi, M. E ; Esfahani, J. A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Numerical analysis of the nanofluid flow characteristics of perforated conical rings in a heat exchanger tube has been investigated under constant wall temperature condition. The pitch ratio of the perforated conical rings is 4 and the number of holes is varied from 0 (typical conical ring) to 10. The flow regime is fully turbulent with the Reynolds number is varied from 5000 to 14,000 and Cu-water nanofluid 0<ϕ<1.5% is selected as the working fluid. The main novelty of this paper is to perform a 3D simulation of this problem because some previous studies using similar geometry were restricted to experimental analysis. The Reynolds averaged Navier Stokes (RANS) equations are solved with the... 

    Effect of vortex-induced vibration of finned cylinders on heat transfer enhancement

    , Article Physics of Fluids ; Volume 31, Issue 7 , 2019 ; 10706631 (ISSN) Izadpanah, E ; Ashouri, A ; Liravi, M ; Amini, Y ; Sharif University of Technology
    American Institute of Physics Inc  2019
    Abstract
    Two-degree-of-freedom vortex-induced vibration (VIV) of a finned cylinder with heat transfer is studied numerically at the Reynolds number Re = 150. The governing equations in the Arbitrary Lagrangian-Eulerian frame are solved by the finite volume method. The dynamics of the oscillating cylinder (with or without fins) in the fluid flow was approximated as a mass-spring system. The effects of the number and arrangement of the fins (14 different cases) on the vortex shedding pattern, vibration amplitude, and frequency and heat transfer of the cylinder are investigated and discussed. The results indicate that in comparison with the stationary state, the effects of the number and arrangement of... 

    Unsteady natural convection in a differentially heated rectangular enclosure possessing sinusoidal corrugated side walls loaded with power law non-newtonian fluid

    , Article Fluid Dynamics ; Volume 54, Issue 2 , 2019 , Pages 159-176 ; 00154628 (ISSN) Salehpour, A ; Abdolahi Sadatlu, M. A ; Sojoudi, A ; Sharif University of Technology
    Pleiades Publishing  2019
    Abstract
    This research is a numerical analysis exhaustively investigating two-dimensional (2D) transient convective heat transfer in a differentially heated rectangle, possessing sinusoidal corrugated side walls at constant temperatures. The quadrilateral space is filled with a power-law non-Newtonian fluid, plus the right and left walls are uniformly cooled and heated, respectively. The top and bottom walls are retained as adiabatic and the side walls are recast exploiting sinusoidal corrugated shape. The governing equations of the problem are solved using the finite volume method. The evaluation of fluid flow and heat transfer is conducted in such a manner that the power law index n varies from 0.6... 

    Effect of several heated interior bodies on turbulent natural convection in enclosures

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1335-1349 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sepahi, F ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this study, turbulent natural convection in a square enclosure including one or four hot and cold bodies is numerically investigated in the range of Rayleigh numbers of 1010 < Ra < 1012. The shape of the internal bodies is square or rectangular with the same surface areas and different aspect ratios. In all cases, the horizontal walls of the enclosure are adiabatic, and the vertical ones are isothermal. It is desired to investigate the influence of different shapes and arrangements of internal bodies on the heat transfer rate inside the enclosure with wide-ranging applications such as ventilation of buildings, electronic cooling, and industrial cold box packages. Governing equations,... 

    Effect of several heated interior bodies on turbulent natural convection in enclosures

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1335-1349 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sepahi, F ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this study, turbulent natural convection in a square enclosure including one or four hot and cold bodies is numerically investigated in the range of Rayleigh numbers of 1010 < Ra < 1012. The shape of the internal bodies is square or rectangular with the same surface areas and different aspect ratios. In all cases, the horizontal walls of the enclosure are adiabatic, and the vertical ones are isothermal. It is desired to investigate the influence of different shapes and arrangements of internal bodies on the heat transfer rate inside the enclosure with wide-ranging applications such as ventilation of buildings, electronic cooling, and industrial cold box packages. Governing equations,... 

    Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies

    , Article Physical Review E ; Volume 101, Issue 2 , 2020 Hejranfar, K ; Hashemi Nasab, H ; Azampour, M. H ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    The objective of this study is to develop and apply an arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method (ALE-FVLBM) for solving two-dimensional compressible inviscid flows around moving bodies. The two-dimensional compressible form of the LB equation is considered and the resulting LB equation is formulated in the ALE framework on an unstructured body-fitted mesh to correctly model the body shape and properly incorporate the mesh movement due to the body motion. The spatial discretization of the resulting system of equations is performed by a second-order cell-centered finite-volume method on arbitrary quadrilateral meshes and an implicit dual-time stepping... 

    Heat transfer and entropy generation analysis in a three-dimensional impinging jet porous heat sink under local thermal non-equilibrium condition

    , Article International Journal of Thermal Sciences ; Volume 153 , 2020 Salimi, M. R ; Taeibi Rahni, M ; Rostamzadeh, H ; Sharif University of Technology
    Elsevier Masson SAS  2020
    Abstract
    A precise heat transfer simulation of a three-dimensional impinging jet porous heat sink is presented and is analyzed from thermodynamics vantage point under local thermal non-equilibrium condition. To increase the computational efficiency of the analysis, pore-scale modeling based on lattice Boltzmann method (LBM) is used inside the porous media (at a meso-scale), whilst finite volume method (FVM) is employed around it (at a macro-scale). The effects of the Reynolds number, porous layer thickness, solid/fluid thermal conductivity ratio, and porosity on the critical heat transfer and entropy generation parameters are investigated. Additionally, the relations between viscous entropy... 

    Evaluation of rans approach in predicting the physics of incompressible turbulent jets-into-crossflow

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 8 PART A , 2008 , Pages 683-698 ; 0791843025 (ISBN); 9780791843024 (ISBN) Javadi, K ; Taeibi Rahni, M ; Darbandi, M ; Sharif University of Technology
    2008
    Abstract
    This work is conducted with evaluation of different turbulence models capabilities in predicting three dimensional jet-into-crossflow (JICF) interactions. For this purpose, first of all, comprehensive discussions on the near wall flow complexities due to discharge of a jet into a crossflow are presented. In this regards, large scale coherent structures such as: counter rotating vortex pairs (CRVP's), near wall secondary motions, horseshoe vortices, and wall jets like are discussed. Secondly, the abilities of different turbulence models in predicting such flows (JICF) are evaluated. Our evaluation is based on three points of view including: 1) JICF characteristics, 2) computed location, and... 

    Microflow in lid-driven microcavity with various aspect ratios

    , Article 46th AIAA Aerospace Sciences Meeting and Exhibit ; 2008 ; 9781563479373 (ISBN) Darbandi, M ; Daghighi, Y ; Vakilipour, S ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2008
    Abstract
    In this work, a finite-volume-element method1-4 is suitably extended to simulate the rarefied gas flow in lid-driven cavities with different height to width ratios. The flow conditions are chosen in a manner to cover the free molecular transition regime to the continuum one. As the hydrodynamic diameter of a driven cavity becomes comparable with the mean free path of the gas molecules in the cavity, the flow can no longer be considered as being in thermodynamic equilibrium; hence, a variety of non-equilibrium or rarefaction effects emerge. In this study, we show that the non-equilibrium effects in lid-driven cavity can be encountered and they become more serious in lower Knudsen numbers. We... 

    Splitting dynamics of ferrofluid droplets inside a microfluidic T-junction using a pulse-width modulated magnetic field in micro-magnetofluidics

    , Article Soft Matter ; Volume 17, Issue 5 , 2021 , Pages 1317-1329 ; 1744683X (ISSN) Bijarchi, M. A ; Dizani, M ; Honarmand, M ; Shafii, M. B ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Micro-magnetofluidics offers a promising tool for better control over the ferrofluid droplet manipulation which has been vastly utilized in biomedical applications in recent years. In this study, the ferrofluid droplet splitting under an asymmetric Pulse-Width-Modulated (PWM) magnetic field in a T-junction is numerically investigated using a finite volume method and VOF two-phase model. By utilizing the PWM magnetic field, two novel regimes of ferrofluid droplet splitting named as Flowing through the Same Branch (FSB) and Double Splitting (DS) have been observed for the first time. In the FSB regime, the daughter droplets move out of the same microchannel outlet, and in the DS regime, the... 

    Investigating the effect of geometric parameters on hydrodynamic and hydro-acoustic performances of submerged propellers

    , Article Applied Ocean Research ; Volume 114 , 2021 ; 01411187 (ISSN) Razaghian, A. H ; Ebrahimi, A ; Zahedi, F ; Javanmardi, M. R ; Seif, M. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The hydro-acoustic analysis of submerged propellers is an important issue in marine industries, which is examined to reduce the vibrations and noise level of vessels alongside reducing fuel consumption and improving hydrodynamic efficiency. B-series propellers are common propellers whose hydrodynamic and acoustic investigation through applying suitable rake, and skew angle can offer proper results to designers for enhancing the hydrodynamic performance and reducing noise. In this study, a model of the five-bladed B-series propeller with the normal skew angle is chosen. The effects of geometric parameters, including the rake angle, skew angle, geometric pitch ratio, and the number of blades... 

    Numerical study to evaluate the important parameters affecting the hydrodynamic performance of manta ray's in flapping motion

    , Article Applied Ocean Research ; Volume 109 , 2021 ; 01411187 (ISSN) Safari, H ; Abbaspour, M ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Manta ray swimming or bio-inspiration propulsion system, as a special type of marine propulsion system, is used for submersible vehicles that require high-speed maneuverability and stability, such as glider and AUV. In a manta ray swimming, the thrust force is generated by a couple of undulation and oscillation of wing, so that the direction of undulation wave and oscillation is upright and perpendicular to the direction of thrust force, respectively. It is possible to combine these two movement modes (flapping motion) on the three-dimensional model without considering the effects of wing twisting and flexibility to simplify and better understand the physical behaviors or special study of... 

    Effect of transverse and parallel magnetic fields on thermal and thermo-hydraulic performances of ferro-nanofluid flow in trapezoidal microchannel heat sink

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 31, Issue 7 , 2021 , Pages 2089-2111 ; 09615539 (ISSN) Sepehrnia, M ; Khorasanizadeh, H ; Shafii, M. B ; Sharif University of Technology
    Emerald Group Holdings Ltd  2021
    Abstract
    Purpose: This paper aims to study the thermal and thermo-hydraulic performances of ferro-nanofluid flow in a three-dimensional trapezoidal microchannel heat sink (TMCHS) under uniform heat flux and magnetic fields. Design/methodology/approach: To investigate the effect of direction of Lorentz force the magnetic field has been applied: transversely in the x direction (Case I);transversely in the y direction (Case II); and parallel in the z direction (Case III). The three-dimensional governing equations with the associated boundary conditions for ferro-nanofluid flow and heat transfer have been solved by using an element-based finite volume method. The coupled algorithm has been used to solve... 

    Hybrid finite volume-finite element methods for hydro-mechanical analysis in highly heterogeneous porous media

    , Article Computers and Geotechnics ; Volume 132 , 2021 ; 0266352X (ISSN) Asadi, R ; Ataie Ashtiani, B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, two classes of advanced finite volume schemes, including Multi-Point Flux Approximation (MPFA) and Dual Discrete Finite Volume (DDFV) method, have been employed in conjunction with the finite element (FE) geomechanics simulator to model the coupled fluid-solid system. Fully saturated porous media with poroelastic behavior, random field permeability and elastic modulus are considered as parameters. The performance of the proposed hydro-mechanical models, including MPFA O-FEM and DDFV-FEM, is examined through different test cases. First, the models are validated and compared with the closed-form solutions in the homogeneous domain. Second, the methods' stability and convergence... 

    Improving the performance of the finned absorber inclined rooftop solar chimney combined with composite PCM and PV module

    , Article Solar Energy ; Volume 228 , 2021 , Pages 562-574 ; 0038092X (ISSN) Ashouri, M ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Solar Chimney (SC) can play a significant role in energy consumption reduction of ventilation applications. The primary purpose of this study is to ameliorate the performance of an inclined rooftop SC integrated with the Phase Change Material (PCM) and Photovoltaic (PV) module, called the SC-PCM-PV system. To this aim, the effects of using finned absorbers and composite PCMs on the performance of the SC-PCM-PV system are investigated for the first time. A 3D-CFD model is developed via the finite volume method to examine the impact of various design parameters, including fin number, fin thickness, PCM type, and PCM mass on natural ventilation duration, ventilation capacity, and power output.... 

    Performance enhancement in transonic axial compressors using blade tip injection coupled with casing treatment

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 219, Issue 5 , 2005 , Pages 321-331 ; 09576509 (ISSN) Beheshti, B. H ; Farhanieh, B ; Ghorbanian, K ; Teixeira, J. A ; Ivey, P. C ; Sharif University of Technology
    2005
    Abstract
    The casing treatment and flow injection upstream of the rotor tip are two effective approaches in suppressing instabilities or recovering from a fully developed stall. This paper presents numerical simulations for a high-speed transonic compressor rotor, NASA Rotor 37, applying a state-of-the-art design for the blade tip injection. This is characterized by introducing a jet flow directly into the casing treatment machined into the shroud. The casing treatment is positioned over the blade tip region and exceeds the impeller axially by ∼30 per cent of the tip chord both in the upstream and in the downstream directions. To numerically solve the governing equations, the three-dimensional finite... 

    Numerical simulation of vortex-induced vibration of a smooth circular cylinder at the subcritical regime

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 236, Issue 4 , 2022 , Pages 916-937 ; 14750902 (ISSN) Abbaspour, M ; Nemati Kourabbasloo, N ; Mohtat, P ; Tanha, A ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    The present paper focuses on the simulation of vortex-induced vibration (VIV) of a rigid, smooth circular cylinder with elastic supports subject to a cross-flow at the subcritical regime of Reynolds number, 30,000

    Numerical simulations of the hydrodynamic performance of the propeller with wake equalizing duct behind the ship

    , Article Scientia Iranica ; Volume 29, Issue 5 B , 2022 , Pages 2332-2348 ; 10263098 (ISSN) Rezaei, S ; Bamdadinejad, M ; Ghassemi, H ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    The equalizing wake flow into the propeller behind the ship is important from the hydrodynamic performance viewpoint. In this study, numerical simulations of the DTMB4119 propeller with two symmetric and asymmetric duct types behind the KRISO Container Ship (KCS) are performed using Computational Fluid Dynamics (CFD). In order to improve the wake equaling flow, a combined duct and stators' configurations are installed before the propeller in the stern of the ship and its hydrodynamic performance is studied using CFD. A duct with the NACA4415 section and two types of stator configurations are selected. The STAR-CCM+ software using the finite volume discretization method was used to solve the... 

    Plasma actuator effects on the flow physics of dynamic stall for a vertical axis wind turbine

    , Article Physics of Fluids ; Volume 34, Issue 7 , 2022 ; 10706631 (ISSN) Zare Chavoshi, M ; Ebrahimi, A ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Darrieus type vertical axis wind turbines have several advantages over other wind turbines for local electricity generation in urban environments. However, the main aerodynamic challenge is the negative impacts of the dynamic stall phenomenon on the turbine performance. This study numerically scrutinizes the effects of plasma actuators on the dynamic stall control and performance improvement of a Darrieus turbine. For this sake, unsteady Reynolds-averaged Navier-Stokes equations are solved using a pressure-based finite volume method. The Suzen-Hoang plasma actuator model is employed to calculate the body forces attributed to the plasma actuator. First, the dynamic stall characteristics of...