Loading...
Search for: finite-volume-method
0.013 seconds
Total 189 records

    Analytical solution of fin/slab heat transfer and property distribution, using Adomian decomposition method

    , Article WSEAS Transactions on Mathematics ; Volume 5, Issue 7 , 2006 , Pages 794-800 ; 11092769 (ISSN) Najafi, M ; Ramezanizadeh, M ; Taeibi Rahni, M ; Saidi, M. H ; Sharif University of Technology
    2006
    Abstract
    Adomian decomposition method has been applied to evaluate the conduction-convection heat transfer through a straight fin, property distribution due to convection-diffusion, and conduction heat transfer through a slab with temperature dependent thermal conductivity. The Adomian decomposition method (ADM), provides the closed form solution of the non-linear problems without applying any non-realistic simplifications and/or approximations. The obtained analytical solutions are compared with exact and numerical solutions, using finite volume method. It is shown that the numerical simulation has some limitations and may not always produce correct results. However, the Adomian decomposition method... 

    Heat transfer and fluid flow in porous media with two equations Non-Darcian model

    , Article 2005 ASME Fluids Engineering Division Summer Conference, Houston, TX, 19 June 2005 through 23 June 2005 ; Volume 2 , 2005 , Pages 637-640 ; 0791841987 (ISBN); 9780791841983 (ISBN) Nouri Borujerdi, A ; Nazari, M ; Sharif University of Technology
    2005
    Abstract
    In the present study criterion for local thermal equilibrium assumption is studied. It concerns with the fluid flow and heat transfer between two parallel plates filled with a saturated porous medium under non-equilibrium condition. A two-equation model is utilized to represent the fluid and solid energy transport. Numerical Finite Volume Method has been developed for solving coupled energy equations and the Non-Darcian effects are considered for description of momentum equation. The effects of suitable non dimensional parameters as Peclet number and conductivity ratio has been studied thoroughly. A suitable non dimensional equation proposed in wide range of Peclet number and conductivity... 

    Heat transfer and fluid flow in porous media with two equations Non-Darcian model

    , Article 2005 ASME Fluids Engineering Division Summer Meeting, FEDSM2005, Houston, TX, 19 June 2005 through 23 June 2005 ; Volume 2005 , 2005 , Pages 1943-1946 ; 0791837602 (ISBN); 9780791837603 (ISBN) Nouri Borujerdi, A ; Nazari, M ; Sharif University of Technology
    2005
    Abstract
    In the present study criterion for local thermal equilibrium assumption is studied. It concerns with the fluid flow and heat transfer between two parallel plates filled with a saturated porous medium under non-equilibrium condition. A two-equation model is utilized to represent the fluid and solid energy transport. Numerical Finite Volume Method has been developed for solving coupled energy equations and the Non-Darcian effects are considered for description of momentum equation. The effects of suitable non dimensional parameters as Peclet number and conductivity ratio has been studied thoroughly. A suitable non dimensional equation proposed in wide range of Peclet number and conductivity... 

    Comparison of interface capturing methods in two phase flow

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 29, Issue 6 , 2005 , Pages 539-548 ; 03601307 (ISSN) Panahi, R ; Jahanbakhsh, E ; Seif, M. S ; Sharif University of Technology
    2005
    Abstract
    In two phase flow investigation, there is a need for robust methods capable of predicting interfaces, in addition to treating the traditional governing equations of fluid mechanics (Navier-Stokes Eqs.). Such methods in a finite volume approach can be classified into two typical categories called interface tracking and interface capturing methods. According to their abilities, interface capturing methods are of more interest in free surface modeling, especially when complex interface topologies such as wave breaking are included. These methods solve a scalar transport equation in order to find the distribution of two phases all over the computational domain. That is, all properties of the... 

    Computational analysis of injection-velocity effects on dynamic parameters of unconfined fuel-vapor clouds

    , Article Combustion, Explosion and Shock Waves ; Volume 41, Issue 5 , 2005 , Pages 510-520 ; 00105082 (ISSN) Doustdar, M. M ; Mazaheri, K ; Hosseinalipour, M ; Sharif University of Technology
    2005
    Abstract
    A computational investigation is performed to study the effects of injection velocity on the main dynamic parameters of the fuel cloud released into the open atmosphere. The volume, shape, and growth rate of the cloud, turbulence intensity, as well as the distribution of fuel concentration, temperature gradient, and self-ignition induction time are the most important parameters determining the mode of combustion that propagates through the cloud. A modified KIVA-based program is employed to fulfill the calculations. Systems of equations are solved by a finite-volume method. The k-ε model and discrete droplet model are applied for modeling gas-phase turbulence and liquid spray, respectively.... 

    Evaluation of a fourth-order finite-volume compact scheme for les with explicit filtering

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 48, Issue 2 , 2005 , Pages 147-163 ; 10407790 (ISSN) Elhami Amiri, A ; Kazemzadeh Hannani, S. K ; Mashayek, F ; Sharif University of Technology
    2005
    Abstract
    The accuracy of the large-eddy simulation (LES) of turbulent flows can be increased by using high-order numerical schemes in space and time, due to a decrease in numerical errors. This work investigates a high-order compact finite-volume scheme suitable for LES. The explicit fourth-order Runge-Kutta (RK) scheme for time marching and fourth-order compact schemes for spatial derivatives using a cell-averaged approach are implemented. Different subgrid-scale models and the effect of explicit filtering in a fully turbulent channel flow are studied. In this flow, the fourth-order compact finite-volume method in space, and fourth-order RK in time in conjunction with the dynamic Smagorinsky model... 

    Performance enhancement in transonic axial compressors using blade tip injection coupled with casing treatment

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 219, Issue 5 , 2005 , Pages 321-331 ; 09576509 (ISSN) Beheshti, B. H ; Farhanieh, B ; Ghorbanian, K ; Teixeira, J. A ; Ivey, P. C ; Sharif University of Technology
    2005
    Abstract
    The casing treatment and flow injection upstream of the rotor tip are two effective approaches in suppressing instabilities or recovering from a fully developed stall. This paper presents numerical simulations for a high-speed transonic compressor rotor, NASA Rotor 37, applying a state-of-the-art design for the blade tip injection. This is characterized by introducing a jet flow directly into the casing treatment machined into the shroud. The casing treatment is positioned over the blade tip region and exceeds the impeller axially by ∼30 per cent of the tip chord both in the upstream and in the downstream directions. To numerically solve the governing equations, the three-dimensional finite... 

    A numerical analysis of vapor flow in concentric annular heat pipes

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 126, Issue 3 , 2004 , Pages 442-448 ; 00982202 (ISSN) Nouri Borujerdi, A ; Layeghi, M ; Sharif University of Technology
    2004
    Abstract
    A numerical method based on the SIMPLE algorithm has been developed for the analysis of vapor flow in a concentric annular heat pipe. The steady-state response of a concentric annular heat pipe to various heat fluxes in the evaporator and condenser sections are studied. The fluid flow and heat transfer in the annular vapor space are simulated using Navier-Stokes equations. The governing equations are solved numerically, using finite volume approach. The vapor pressure and temperature distributions along a concentric annular heat pipe are predicted for a number of symmetric test cases. The vapor flow reversal and transition to turbulence phenomena are also predicted. The results are compared... 

    A finite element volume method to simulate flow on mixed element shapes

    , Article 36th AIAA Thermophysics Conference 2003, Orlando, FL, 23 June 2003 through 26 June 2003 ; 2003 ; 9781624100970 (ISBN) Darbandi, M ; Schneider, G. E ; Naderi, A ; Sharif University of Technology
    2003
    Abstract
    In order to be a powerful tool, finite-element and finite-volume methods must be capable of handling complex flow in complex geometries. In this work, a structured finite volume element method is suitably developed for solving incompressible flow on a collocated grid topology. The method is generally-applicable to arbitrarily shaped elements and orientations and, thus, challenges the potential to unify many of the different grid topologies into a single formulation. The correct estimation of the convec-tive and diffusive flux terms at cell faces remarkably enhances the solution accuracy of the extended formulation. It is shown that the current formulation is enough robust to treat any...