Loading...
Search for: flexural-strengths
0.007 seconds
Total 34 records

    Effects of nucleation agent particle size on properties, crystallisation and microstructure of glass-ceramics in TiO2-ZrO2-Li 2O-CaO- Al2O3-SiO2 system

    , Article Advances in Applied Ceramics ; Volume 109, Issue 6 , 2010 , Pages 318-323 ; 17436753 (ISSN) Nemati, A ; Goharian, P ; Shabanian, M ; Afshar, A ; Sharif University of Technology
    2010
    Abstract
    The objective of this study was to evaluate the effects of P 2O5 particle size distribution on the crystalline phases and microstructure of lithium disilicate glass-ceramics derived from the TiO2-ZrO2-Li2O-CaO-Al2O 3-SiO2 system for dentistry applications. The samples were made via fusion and casting procedure. Crystallisation as well as the morphology and microstructure of the samples were investigated using X-ray diffraction, differential scanning calorimetric and scanning electron microscopy. The results showed that the crystallisation of the samples occurred in the range of 500-650°C. The main crystalline phase was lithium disilicate (Li2Si2O5) along with Lithium metasilicate (Li2SiO3),... 

    Densification and properties of Fe2O3 nanoparticles added CaO refractories

    , Article Ceramics International ; 2016 ; 02728842 (ISSN) Ghasemi Kahrizsangi, S ; Nemati, A ; Shahraki, A ; Farooghi, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Up to 8wt. % of Nano-iron oxide was added to CaO refractory matrix. The crystalline phases and microstructure characteristics of specimens sintered at 1650°C for 5h in an electric furnace were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The physical properties are reported in terms of bulk density, apparent porosity and hydration resistance. The mechanical behavior was studied by a cold crushing strength (CCS) and flexural strength at 1200°C test. As a result, it was found that the presence of Nano-iron oxide in the CaO refractory matrix induced 2CaO.Fe2O3 (C2F), CaO.Fe2O3 (CF) and 3CaO.Al2O3 (C3A) phase's formation, which improved the sintering... 

    Behavior of polymer concrete beam/pile confined with CFRP sleeves

    , Article Mechanics of Advanced Materials and Structures ; 2017 , Pages 1-8 ; 15376494 (ISSN) Toufigh, V ; Toufigh, V ; Saadatmanesh, H ; Ahmari, S ; Kabiri, E ; Sharif University of Technology
    Abstract
    This research investigates the flexural behavior of a polymer concrete beam/pile encased with carbon fiber sleeve. The mechanical properties of carbon fiber sleeves in tension and cement and polymer concrete in compression were determined. Polymer concrete beams were tested in flexure to determine the bending moment capacity. Then, the test results were compared to the theoretical model results. Finally, a parametric study was conducted to determine the influence of beam/pile parameters on the capacity of the element. Based on the investigation, carbon fiber sleeve filled with polymer concrete exhibits outstanding structural performance including ductility and bending capacity. © 2017 Taylor... 

    Investigation of the fracture resistance in hoop wound composites modified with two different reactive oligomers

    , Article Materials and Design ; Volume 30, Issue 8 , 2009 , Pages 3048-3055 ; 02641275 (ISSN) Abadyan, M ; Bagheri, R ; Haddadpour, H ; Motamedi, P ; Sharif University of Technology
    2009
    Abstract
    Rubber modification of hoop filament wound epoxy composites was investigated using amine-terminated butadiene acrylonitrile (ATBN) and carboxyl-terminated butadiene acrylonitrile (CTBN) oligomers. Both mechanical and physical properties of modified composites were investigated and the morphology of the samples was studied via scanning electron microscopy. Results indicated that, when added to the epoxy matrix, ATBN effected a superior increase in toughness, yet a more severe decline in compressive and flexural strength, compared to CTBN. In contrast, in the case of composite samples, incorporation of ATBN led to more favorable mechanical properties, from the viewpoint of both toughness and... 

    Use of rubber modification technique to improve fracture-resistance of hoop wound composites

    , Article Materials and Design ; Volume 30, Issue 6 , 2009 , Pages 1976-1984 ; 02641275 (ISSN) Abadyan, M ; Khademi, V ; Bagheri, R ; Haddadpour, H ; Kouchakzadeh, M. A ; Farsadi, M ; Sharif University of Technology
    2009
    Abstract
    Toughness improvement of an epoxy resin and respective hoop wound composite were investigated systematically using amine-terminated butadiene acrylonitrile (ATBN) liquid rubber. Rubber modification improves fracture toughness of epoxy resin with slight reduction in the glass transition temperature (Tg), flexural and compressive properties of resin. Impact resistance of composite is improved by rubber modification similar to modified resin. Interlaminar shear strength (ILSS), compressive modulus and strength, and flexural strength of composite decreased slightly with rubber modification. To interpret the data, the void content of composite samples was determined and the damaged surfaces of... 

    Behavior of polymer concrete beam/pile confined with CFRP sleeves

    , Article Mechanics of Advanced Materials and Structures ; Volume 26, Issue 4 , 2019 , Pages 333-340 ; 15376494 (ISSN) Toufigh, V ; Toufigh, V ; Saadatmanesh, H ; Ahmari, S ; Kabiri, E ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    This research investigates the flexural behavior of a polymer concrete beam/pile encased with carbon fiber sleeve. The mechanical properties of carbon fiber sleeves in tension and cement and polymer concrete in compression were determined. Polymer concrete beams were tested in flexure to determine the bending moment capacity. Then, the test results were compared to the theoretical model results. Finally, a parametric study was conducted to determine the influence of beam/pile parameters on the capacity of the element. Based on the investigation, carbon fiber sleeve filled with polymer concrete exhibits outstanding structural performance including ductility and bending capacity  

    Mechanical strength of CFRP and GFRP composites filled with APP fire retardant powder exposed to elevated temperature

    , Article Fire Safety Journal ; Volume 115 , 2020 Shekarchi, M ; Majdabadi Farahani, E ; Yekrangnia, M ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Ammonium polyphosphate (APP) is one of the most widely used halogen-free flame retardant, added in various resins to improve the fire properties, such as flame and smoke spread ratings and LOI, of fiber-reinforced polymer (FRP) composites. This paper experimentally investigates the effects of using APP, as a fire-retardant filler, on mechanical properties (i.e. ultimate tensile, flexural, and bond strength) of glass fiber-reinforced polymer (GFRP) and carbon fiber-reinforced polymer (CFRP) composites. Based on two fiber types (i.e. carbon and glass) and three different APP mass fractions in resin (i.e. 0, 20, and 40% of total weight of matrix), six sets of specimens were prepared for each... 

    The effect of mixing molar ratios and sand particles on microstructure and mechanical properties of metakaolin-based geopolymers

    , Article Materials Chemistry and Physics ; Volume 240 , 2020 Riahi, S ; Nemati, A ; Khodabandeh, A. R ; Baghshahi, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study the influence of the molar ratios such as SiO2:Al2O3:Na2O:H2O, as well as the sand particles on the mechanical performance, shrinkage and microstructure of metakaolin based geopolymers was studied. Considering different content of the reactive silica and alumina in metakaolin, forty eight different compositions were prepared. The proper condition for achieving the highest mechanical performance as well as less structural defects by tailoring the curing condition, molar ratios and addition of sand particles are presented. Special attention was paid to the incorporation of sand particles up to 70 wt% on the microstructure, shrinkage and mechanical properties of metakaolin based... 

    Experimental and numerical investigation of minimum required fiber content in bending characteristics of 100 MPa UHPC-formulated concrete

    , Article Case Studies in Construction Materials ; Volume 16 , 2022 ; 22145095 (ISSN) Kamjou, A. S ; Khaloo, A ; Hassanpour, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The present study investigates the lowest possible amount of steel and polypropylene fibers in improving the compressive and flexural strength, stiffness, and energy capacity of high strength 100 MPa concrete with a mix design similar to that of Ultra-High Performance Concrete (UHPC). Twenty-eight 100 × 200 mm cylindrical specimens with 0%, 0.2%, 0.4%, and 0.6% volumetric percentage of short steel fibers and polypropylene fibers were fabricated, which were at the lowest predicted percentages with respect to fiber content recommended in the literature. To assess the flexural performance of fiber-reinforced concrete panels, specimens with dimensions of 200 × 600 × 20 mm were made with the same... 

    Effect of compressive glass fiber-reinforced polymer bars on flexural performance of reinforced concrete beams

    , Article ACI Structural Journal ; Volume 119, Issue 6 , 2022 , Pages 5-18 ; 08893241 (ISSN) Hassanpour, S ; Khaloo, A ; Aliasghar Mamaghani, M ; Khaloo, H ; Sharif University of Technology
    American Concrete Institute  2022
    Abstract
    This research studies the effect of glass fiber-reinforced polymer (GFRP) bars as compressive reinforcement in reinforced concrete (RC) beam members. Three singly and six doubly reinforced GFRP-RC beams were tested under a four-point loading configuration. The effect of compressive reinforcement on the load-bearing capacity, ductility, stiffness, and failure mode is determined. Also, the compressive performance of GFRP bars is evaluated by testing GFRP-RC cylinders. According to the results, GFRP bars in compression had a limited contribution to enhancing flexural strength, and the maximum increment in the flexural capacity of doubly reinforced beams compared to singly reinforced specimens... 

    Production of waste bio-fiber cement-based composites reinforced with nano-SiO 2 particles as a substitute for asbestos cement composites

    , Article Construction and Building Materials ; Volume 31 , 2012 , Pages 105-111 ; 09500618 (ISSN) Hosseinpourpia, R ; Varshoee, A ; Soltani, M ; Hosseini, P ; Ziaei Tabari, H ; Sharif University of Technology
    2012
    Abstract
    The environmental impact of asbestos fibers on human health and their consequent safety-related problems indicate that there is a significant need to replace this material in all asbestos-containing products. Many different types of fibers have been introduced to replace asbestos fibers. In this study, the performance of silica nano-particles combined with waste paper pulp fibers (sulfite fibers) has been investigated. Different mechanical (compressive and flexural strengths and bending performance), durability (water absorption), physical (bulk density and flowability), and microstructural (scanning electron microscopy) tests were conducted to examine the properties of manufactured green... 

    Roller compacted concrete pavements reinforced with steel and polypropylene fibers

    , Article Structural Engineering and Mechanics ; Volume 40, Issue 2 , 2011 , Pages 149-165 ; 12254568 (ISSN) Madhkhan, M ; Azizkhani, R ; Torki, M. E ; Sharif University of Technology
    2011
    Abstract
    In this paper, the effects of both pozzolans and (steel and poly-propylene) fibers on the mechanical properties of roller compacted concrete are studied. Specimens for the experiments were made using a soil-based approach; thus, the Kango's vibration hammer was used for compaction. The tests in the first stage were carried out to determine the optimal moisture requirements for mix designs using cubic 150 × 150 × 150 mm specimens. In the tests of the second stage, the mechanical behaviors of the main specimens made using the optimal moisture obtained in the previous stage were evaluated using 28, 90, and 210 day cubic specimens. The mechanical properties of RCC pavements were evaluated using... 

    Influence of nano-SiO2 addition on microstructure and mechanical properties of cement mortars for ferrocement

    , Article Transportation Research Record ; Issue 2141 , 2010 , Pages 15-20 ; 03611981 (ISSN) Hosseini, P ; Booshehrian, A ; Farshchi, S ; Sharif University of Technology
    Abstract
    Because of their unique physical and chemical properties, nanoparticles have been gaining increasing attention and have been used in many fields to fabricate new materials with novel functions. If nanoparticles are integrated with cement-based building materials, the new materials might possess some outstanding properties. Ferrocement is a type of thin-wall reinforced concrete commonly constructed of hydraulic cement mortar reinforced with closely spaced layers of continuous and relatively small-sized wire mesh. The low level of technical skill required to make ferrocement and the ready availability of its materials make ferrocement suitable for a wide variety of applications. This study... 

    Synthesis and characterization of diopside glass-ceramic matrix composite reinforced with aluminum titanate

    , Article Ceramics International ; Volume 35, Issue 4 , 2009 , Pages 1447-1452 ; 02728842 (ISSN) Yousefi, M ; Alizadeh, P ; Eftekhari Yekta, B ; Molaie, F ; Ghafoorian, N ; Montazerian, M ; Sharif University of Technology
    2009
    Abstract
    Glass-ceramic composites in the SiO2-CaO-MgO-(Na2O) system, reinforced with 5, 10 and 20 wt.% aluminum titanate were synthesized by pressureless sintering. Optimum sintering temperatures with maximum relative density were determined for each composition. The composites were fired above the crystallization peak temperature of glass-ceramic. Mechanical properties of glass-ceramic and sintered composites, such as fracture toughness, flexural strength and Vickers microhardness, were investigated. The sintered composites were characterized by scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). The results showed that the composite containing 10...