Loading...
Search for: flow-kinetics
0.01 seconds
Total 31 records

    Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 3. dilational surface rheology

    , Article Journal of Physical Chemistry B ; Volume 119, Issue 9 , January , 2015 , Pages 3768-3775 ; 15206106 (ISSN) Fainerman, V. B ; Aksenenko, E. V ; Lylyk, S. V ; Lotfi, M ; Miller, R ; Sharif University of Technology
    Abstract
    The influence of the addition of the nonionic surfactants C12DMPO, C14DMPO, C10OH, and C10EO5 at concentrations between 10-5 and 10-1 mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10-5 mmol/L on the dilational surface rheology is studied. A maximum in the viscoelasticity modulus |E| occurs at very low surfactant concentrations (10-4 to 10-3 mmol/L) for mixtures of BCS with C12DMPO and C14DMPO and for mixtures of BLG with C10EO5, while for mixture of BCS with C10EO5 the value of |E| only slightly increased. The |E| values... 

    Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering

    , Article Biologicals ; Volume 53 , 2018 , Pages 10-18 ; 10451056 (ISSN) Esmaeili Pourfarhangi, K ; Mashayekhan, S ; Ghanbari Asl, S ; Hajebrahimi, Z ; Sharif University of Technology
    Academic Press  2018
    Abstract
    High rates of mortality and morbidity stemming from cardiovascular diseases unveil extreme limitations in current therapies despite enormous advances in medical and pharmaceutical sciences. Following myocardial infarction (MI), parts of myocardium undergo irreversible remodeling and is substituted by a scar tissue which eventually leads to heart failure (HF). To address this issue, cardiac patches have been utilized to initiate myocardial regeneration. In this study, a porous cardiac patch is fabricated using a mixture of decellularized myocardium extracellular matrix (ECM) and chitosan (CS). Results of rheological measurements, SEM, biodegradation test, and MTT assay showed that the... 

    Appraising the impacts of SiO2, ZnO and TiO2 nanoparticles on rheological properties and shale inhibition of water-based drilling muds

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 581 , 2019 ; 09277757 (ISSN) Esfandyari Bayat, A ; Shams, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In recent decades, utilizing of water-based muds (WBMs) in drilling oil and gas wells is ever increasing comparing to oil-based muds and synthetic-based muds due to the lower environmental issues. However, the main drawbacks with WBMs are rheological properties inefficiency and shale swelling which have caused attentions turn to improvement of WBMs’ rheological properties. In this study, the effects of various nanoparticles (NPs) namely titanium dioxide (TiO2), silicon dioxide (SiO2), and zinc oxide (ZnO) on improving rheological properties and shale recovery rate of a WBM sample at two temperatures (25 and 50 °C) were investigated. The concentrations of NPs in the base mud were set at 0.01,... 

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties... 

    Dynamics of rear stagnant cap formation at the surface of rising bubbles in surfactant solutions at large reynolds and marangoni numbers and for slow sorption kinetics

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 492 , 2016 , Pages 127-137 ; 09277757 (ISSN) Dukhin, S. S ; Lotfi, M ; Kovalchuk, V. I ; Bastani, D ; Miller, R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    In spite of the high level in the theory of steady rear stagnant caps (RSC) and its influence on steady rising, its practical application is mostly impossible because the coefficients for the adsorption and desorption rates are separately unknown. The determination of ka and kd separately is an actual task for the adsorption dynamics as whole. While steady RSC and steady rising retardation by surfactants are described in literature in details, only few papers are devoted to the modeling of the decelerated rising. Moreover, steady rising depends on the ratio ka/kd and its investigation is not helpful for the determination of kd. In contrast a possibility to determine kd (or ka independently)... 

    Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Dorri Nokoorani, Y ; Shamloo, A ; Bahadoran, M ; Moravvej, H ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Using the skin tissue engineering approach is a way to help the body to recover its lost skin in cases that the spontaneous healing process is either impossible or inadequate, such as severe wounds or burns. In the present study, chitosan/gelatin-based scaffolds containing 0.25, 0.5, 0.75, and 1% allantoin were created to improve the wounds’ healing process. EDC and NHS were used to cross-link the samples, which were further freeze-dried. Different in-vitro methods were utilized to characterize the specimens, including SEM imaging, PBS absorption and degradation tests, mechanical experiments, allantoin release profile assessment, antibacterial assay, and cell viability and adhesion tests.... 

    Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 192 , 2020 Dehghan-Baniani, D ; Chen, Y ; Wang, D ; Bagheri, R ; Solouk, A ; Wu, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Limited regeneration capacity of cartilage can be addressed by tissue engineering approaches including localized delivery of bioactive agents using biomaterials. Although chitosan hydrogels have been considered as appropriate candidates for these purposes, however, their poor mechanical properties limit their real applications. Here, we develop in situ forming chitosan hydrogels with enhanced shear modulus by chemical modification of chitosan using N-(β-maleimidopropyloxy) succinimide ester (BMPS). Moreover, we utilize β-Glycerophosphate (β-GP) in the hydrogels for achieving thermosensitivity. We investigate the effects of BMPS, β-GP and chitosan concentration on rheological and swelling... 

    Plasma core at the center of a sonoluminescing bubble

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 87, Issue 1 , 2013 ; 15393755 (ISSN) Bemani, F ; Sadighi Bonabi, R ; Sharif University of Technology
    2013
    Abstract
    Considering high temperature and pressure during single bubble sonoluminescence collapse, a hot plasma core is generated at the center of the bubble. In this paper a statistical mechanics approach is used to calculate the core pressure and temperature. A hydrochemical model alongside a plasma core is used to study the bubble dynamics in two host liquids of water and sulfuric acid 85 wt % containing Ar atoms. Calculation shows that the extreme pressure and temperature in the plasma core are mainly due to the interaction of the ionized Ar atoms and electrons, which is one step forward to sonofusion. The thermal bremsstrahlung mechanism of radiation is used to analyze the emitted optical energy... 

    Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering

    , Article International Journal of Biological Macromolecules ; Volume 74 , 2015 , Pages 360-366 ; 01418130 (ISSN) Baniasadi, H ; Ramazani S. A., A ; Mashayekhan, S ; Sharif University of Technology
    Abstract
    This paper reports on the development of conductive porous scaffolds by incorporating conductive polyaniline/graphene (PAG) nanoparticles into a chitosan/gelatin matrix for its potential application in peripheral nerve regeneration. The effect of PAG content on the various properties of the scaffold is investigated and the results showed that the electrical conductivity and mechanical properties increased proportional to the increase in the PAG loading, while the porosity, swelling ratio and in vitro biodegradability decreased. In addition, the biocompatibility was evaluated by assessing the adhesion and proliferation of Schwann cells on the prepared scaffolds using SEM and MTT assay,... 

    On the viscosity of composite suspensions of aluminum and ammonium perchlorate particles dispersed in hydroxyl terminated polybutadiene-New empirical model

    , Article Journal of Colloid and Interface Science ; Volume 299, Issue 2 , 2006 , Pages 962-971 ; 00219797 (ISSN) Arefinia, R ; Shojaei, A ; Sharif University of Technology
    2006
    Abstract
    The rheological properties of fuel suspensions with various solid loadings up to close their maximum packing fraction and suspending media having different viscosities are investigated using the rotational viscometer at relatively low shear rates in which suspensions behave as Newtonian fluids. Aluminum (Al) and ammonium perchlorate (AP) particles are major solid components of any solid fuel system which should be distributed uniformly inside a polymeric binder based on hydroxyl terminated polybutadiene (HTPB). The experimental data generated in this investigation indicates that the relative viscosity of the suspensions is independent of viscosity of polymer binder, but in addition to solid... 

    Investigation of segregation of large particles in a pressurized fluidized bed with a high velocity gas: A discrete particle simulation

    , Article Powder Technology ; Volume 246 , September , 2013 , Pages 398-412 ; 00325910 (ISSN) Alavi Shoushtari, N ; Hosseini, S. A ; Soleimani, R ; Sharif University of Technology
    2013
    Abstract
    A numerical study on mixing/segregation phenomena in a pressurized fluidized bed with large particles of Geldart D type of binary density but same diameter with high velocity gas was performed by the use of discrete particle simulation. Particle mixtures are composed of spherical particles with 2mm diameter and 1g/cm3 flotsam density and different jetsam densities of 1.25, 2 and 2.5g/cm3 with jetsam volume fraction of 0.5. The particles are initially packed approaching perfect mixing state in a rectangular bed and then fluidized by gas uniformly injected at the bottom of the bed. Effect of increase of pressure and density ratio was investigated and mixing/segregation behavior is discussed in...