Loading...
Search for: flow-modeling
0.016 seconds
Total 102 records

    A mass conservative scheme for simulating shallow flows over variable topographies using unstructured grid

    , Article Advances in Water Resources ; Volume 28, Issue 5 , 2005 , Pages 523-539 ; 03091708 (ISSN) Mohamadian, A ; Le Roux, D. Y ; Tajrishi, M ; Mazaheri, K ; Sharif University of Technology
    2005
    Abstract
    Most available numerical methods face problems, in the presence of variable topographies, due to the imbalance between the source and flux terms. Treatments for this problem generally work well for structured grids, but most of them are not directly applicable for unstructured grids. On the other hand, despite of their good performance for discontinuous flows, most available numerical schemes (such as HLL flux and ENO schemes) induce a high level of numerical diffusion in simulating recirculating flows. A numerical method for simulating shallow recirculating flows over a variable topography on unstructured grids is presented. This mass conservative approach can simulate different flow... 

    An Analytic Solution for the Frontal Flow Period in 1D Counter-Current Spontaneous Imbibition into Fractured Porous Media Including Gravity and Wettability Effects

    , Article Transport in Porous Media ; Volume 89, Issue 1 , 2011 , Pages 49-62 ; 01693913 (ISSN) Mirzaei Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    Abstract
    Including gravity and wettability effects, a full analytical solution for the frontal flow period for 1D counter-current spontaneous imbibition of a wetting phase into a porous medium saturated initially with non-wetting phase at initial wetting phase saturation is presented. The analytical solution applicable for liquid-liquid and liquid-gas systems is essentially valid for the cases when the gravity forces are relatively large and before the wetting phase front hits the no-flow boundary in the capillary-dominated regime. The new analytical solution free of any arbitrary parameters can also be utilized for predicting non-wetting phase recovery by spontaneous imbibition. In addition, a new... 

    Modelling and simulation of equiaxed dendritic structures permeability for Pb-Sn alloys

    , Article Materials Science and Technology ; Volume 24, Issue 12 , 2008 , Pages 1444-1451 ; 02670836 (ISSN) Mirbagheri, M. H ; Khajeh, E ; Sharif University of Technology
    2008
    Abstract
    In this investigation, the permeability of interdendritic liquid flow through the equiaxial mushy zone has been modelled for Pb-Sn alloys based on experimental measurements. In the present work by solving Navier-Stokes equation, the flow pattern around the equiaxed dendrite has been obtained and then permeability has been determined by applying Darcy's law. Numerical determined values of permeabilities have been analysed by the use of Statistical Package for the Social Sciences (SPSS) statistical software. Then an experimental method has been used to measure the permeability for flow through equiaxial mushy zone of Pb-Sn alloys. Results show that increasing the solid fraction and... 

    Simulation of a density current turbulent flow employing different RANS models: a comparison study

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 53-63 ; 10263098 (ISSN) Mehdizadeh, A ; Firoozabadi, B ; Sharif University of Technology
    2009
    Abstract
    The accuracy of Reynolds Averaged Navier-Stokes (RANS) turbulence models to predict the behavior of 2-D density currents has been examined. In this work, a steady density current is simulated by the k - ε, k - ε RNG, two-layer k - ε and modified v̄2 - f model, all of which are compared with the experimental data. Density currents, with a uniform velocity and concentration, enter a channel via a sluice gate into a lighter ambient fluid and move forward down-slope. The eddy-viscosity concept cannot accurately simulate this flow because of two stress production structures found within it. Results show that all isotropic models have a weak outcome on this current, but by improving the ability of... 

    A systematic method for the complex walls no-slip boundary condition modeling in dissipative particle dynamics

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1253-1260 ; 10263098 (ISSN) Mehboudi, A ; Saidi, M. S ; Sharif University of Technology
    2011
    Abstract
    The dissipative particle dynamics method is an efficient method for studying the hydrodynamics of complex fluids. One of the most challenging aspects of this method appears when the solid walls exist. The solid walls disturb the homogeneity of the fluid near the wall and cause some spurious fluctuations. Thus, in recent years a large amount of effort has been devoted to solve this shortcoming. Fortunately the mentioned problem has almost been solved for the simple walls such as flat walls, circular cylinders, spheres, etc. However no systematic model has addressed the complex walls. It should be noted that almost all of the walls we deal with in practical problems such as MEMS devices,... 

    Numerical study on boundary layer control using CH4[sbnd]H2[sbnd]air Micro-reacting jet

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 47 , 2016 , Pages 22433-22452 ; 03603199 (ISSN) Mardani, A ; Yahyavi Koochaksarai, M ; Javadi, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The focus of present numerical study is on assessment of control of laminar separation bubble phenomenon using Micro-scale combustion actuators in an airfoil with low Reynolds number under surface effect and free flows. In this way, the characteristics of laminar separation bubble such as its formation, geometry, and transition from laminar to turbulent around airfoil SD8020 in attack angles of 5 and 8° are investigated. Following that, the new combustion actuators in Micro-scale, cold, and hot air-jet injection are introduced to control boundary layer flow in terms of eliminating the separation bubble. Some mechanisms are identified for improvement of methane-air premixed flame... 

    Inviscid compressible flow computations on 3D unstructured grids

    , Article Scientia Iranica ; Volume 12, Issue 2 , 2005 , Pages 207-216 ; 10263098 (ISSN) Manzari, M. T ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    In this paper, an explicit finite element based numerical procedure is presented for simulating three-dimensional inviscid compressible flow problems. The implementation of the first-order upwind method and a higher-order artificial dissipation technique on unstructured grids, using tetrahedral elements, is described. Both schemes use a multi-stage Runge-Kutta time-stepping method for time integration. The use of an edge-based data structure in the finite element formulation and its computational merits are also elaborated. Furthermore, the performance of the two schemes in solving a benchmark problem involving transonic flow about an ONERA M6 wing is compared and detailed solutions are... 

    Prediction of waterflood performance using a modified capacitance-resistance model: A proxy with a time-correlated model error

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , March , 2020 Mamghaderi, A ; Aminshahidy, B ; Bazargan, H ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Capacitance-Resistive Model (CRM), as a fast yet efficient proxy model, suffers from some limitations in modeling relatively complex reservoirs. Some current improvements on this proxy made it a more powerful simulator with updating parameters over time. However, the model's intrinsic uncertainty arisen from simplifying fluid-flow modeling by some limited number of constant parameters is not addressed yet. In this study, this structural limitation of CRM has been addressed by introducing a time-correlated model error, including stochastic and non-stochastic parameters, embedded into this proxy's formulation. The error term's non-stochastic parameters have been tuned to be used in forecasting... 

    Prediction of waterflood performance using a modified capacitance-resistance model: A proxy with a time-correlated model error

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , 2021 ; 09204105 (ISSN) Mamghaderi, A ; Aminshahidy, B ; Bazargan, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Capacitance-Resistive Model (CRM), as a fast yet efficient proxy model, suffers from some limitations in modeling relatively complex reservoirs. Some current improvements on this proxy made it a more powerful simulator with updating parameters over time. However, the model's intrinsic uncertainty arisen from simplifying fluid-flow modeling by some limited number of constant parameters is not addressed yet. In this study, this structural limitation of CRM has been addressed by introducing a time-correlated model error, including stochastic and non-stochastic parameters, embedded into this proxy's formulation. The error term's non-stochastic parameters have been tuned to be used in forecasting... 

    Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol)

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 6 , 2009 , Pages 2322-2331 ; 19327447 (ISSN) Mahmoudi, M ; Shokrgozar, M. A ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Vali, H ; Häfeli, U. O ; Bonakdar, S ; Sharif University of Technology
    2009
    Abstract
    This study investigated the behavior of ferrofluids containing superparamagnetic iron oxide nanoparticles (SPION) of various compositions for potential applications in drug delivery and imaging. To ensure biocompatibility, the interaction of these SPION with two cell lines (adhesive and suspended) was also investigated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. The cell lines studied were primary mouse connective tissue cells (adhesive) and human leukemia cells (suspended). SPION were synthesized with a co-precipitation method under different stirring rates and NaOH molarities. The SPION demonstrated a range of magnetic saturations due to their... 

    Reservoir flow simulation using combined vorticity-based gridding and multi-scale upscaling

    , Article Society of Petroleum Engineers - SPE Asia Pacific Oil and Gas Conference and Exhibition 2007 ""Resources, Professionalism, Technology: Time to Deliver"", Jakarta, 30 October 2007 through 1 November 2007 ; Volume 2 , 2007 , Pages 927-946 ; 9781604238594 (ISBN) Mahani, H ; Ashjari, M. A ; Firoozabadi, B ; Sharif University of Technology
    Society of Petroleum Engineers (SPE)  2007
    Abstract
    A novel technique for upscaling of detailed geological reservoir descriptions is presented. The technique aims at reducing both numerical dispersion and homogenization error, generated due to incorporating a coarse computational grid and assigning effective permeability to coarse grid blocks respectively. In particular we consider implicit-pressure explicit-saturation (IMPES) scheme where homogenization error impacts the accuracy of the coarse grid solution of the pressure equation. To reduce the homogenization error, we employ the new vorticity-based gridding that generates a non-uniform coarse grid with high resolution at high vorticity zones. In addition, to control numerical dispersion,... 

    Pore-Scale Monitoring of Wettability Alteration by Silica Nanoparticles During Polymer Flooding to Heavy Oil in a Five-Spot Glass Micromodel

    , Article Transport in Porous Media ; Volume 87, Issue 3 , 2011 , Pages 653-664 ; 01693913 (ISSN) Maghzi, A ; Mohebbi, A ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    It is well known that the oil recovery is affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of medium surfaces has remained a topic of debate in the literature. Furthermore, there is a little information of the way dispersed silica nanoparticles affect the oil recovery efficiency during polymer flooding, especially, when heavy oil is used. In this study, a series of injection experiments were performed in a five-spot glass micromodel after saturation with the heavy oil. Polyacrylamide solution and dispersed silica nanoparticles in polyacrylamide (DSNP) solution were used as injected fluids. The oil recovery as well as fluid distribution in... 

    Performance predicting modeling of axial-flow compressor at design and off-design conditions

    , Article Proceedings of the ASME Turbo Expo, 9 June 2008 through 13 June 2008, Berlin ; Volume 6, Issue PART A , 2008 , Pages 317-324 ; 9780791843161 (ISBN) Madadi, A ; Hajilouy Benisi, A ; International Gas Turbine Institute ; Sharif University of Technology
    2008
    Abstract
    Axial flow compressor is one of the most important parts of gas turbine units. Therefore, its design and performance prediction are very important. One-dimensional modeling is a simple, fast and accurate method for performance prediction of any type of compressors with different geometries. In this approach, inlet flow conditions and compressor geometry are known and by considering various compressor losses, velocity triangles at rotor, and stator inlets and outlets are determined, and then compressor performance characteristics are predicted. Numerous models have been developed theoretically and experimentally for estimating various types of compressor losses. In present work, performance... 

    High-level modeling approach for analyzing the effects of traffic models on power and throughput in mesh-based NoCs

    , Article Proceedings of the IEEE International Frequency Control Symposium and Exposition, 4 January 2008 through 8 January 2008, Hyderabad ; 2008 , Pages 415-420 ; 0769530834 (ISBN); 9780769530833 (ISBN) Koohi, S ; Mirza Aghatabar, M ; Hessabi, S ; Pedram, M ; VLSI Society of India ; Sharif University of Technology
    2008
    Abstract
    Traffic models exert different message flows in a network and have a considerable effect on power consumption through different applications. So a good power analysis should consider traffic models. In this paper we present power and throughput models in terms of traffic rate parameters for the most popular traffic models, i.e. Uniform, Local, HotSpot and First Matrix Transpose (FMT) as a permutational traffic model. We also select Mesh topology as the most prominent NoC topology and validate the presented models by comparing our results against simulation results from Synopsys Power Compiler and Modelsim From the comparison, we show that our modeling approach leads to average error of 2%... 

    Optimization-based upscaling for two-phase flow through porous media: Structured grid generation

    , Article Transport in Porous Media ; Volume 108, Issue 3 , July , 2015 , Pages 617-648 ; 01693913 (ISSN) Khoozan, D ; Firoozabadi, B ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    The process of coarsening the detailed geological model of a reservoir to simulation models is known as upscaling. There are two fundamental steps in the procedure of upscaling, i.e., defining the coarse grid geometry and calculating the average properties for the generated coarse grid. In this paper, the focus will be on investigating the applicability of optimization in the context of coarse grid geometry definition. To do so, different objective function candidates will be defined, and their behavior in terms of predicting the two-phase flow accuracy of coarse grids will be analyzed to determine the proper objective function. A modified objective function employing the idea of analytical... 

    Effect of DEM resolution in flood modeling: a case study of Gorganrood River, Northeastern Iran

    , Article Natural Hazards ; Volume 112, Issue 3 , 2022 , Pages 2673-2693 ; 0921030X (ISSN) Khojeh, S ; Ataie Ashtiani, B ; Hosseini, S. M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    This study evaluated the efficiency of different Digital Elevation Models (DEMs), including ALOS-12.5 m, SRTM-30 m, SRTM-90 m, and ASTER-30 m v3 when being applied for the hydraulic simulation of flood inundation areas. HEC-RAS-2D model was employed to simulate inundation extent of a 400-year flood (Mar 17, 2019, with peak discharge ~ 547.92 m3/s) along 70 km reach of low-gradient Gorganrood River, northeastern Iran. Fit percentage indicator (FI) and BIAS percentage indicator (BI) were used to evaluate the results in comparison with the remotely sensed inundated area data. The results revealed that the accuracy and capability of the ALOS and SRTM-30 m were higher in simulation of flood... 

    Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams

    , Article Computers and Geotechnics ; Volume 38, Issue 2 , March , 2011 , Pages 142-166 ; 0266352X (ISSN) Khoei, A. R ; Mohammadnejad, T ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled numerical model is presented for the finite element analysis of the deforming porous medium interacting with the flow of two immiscible compressible wetting and non-wetting pore fluids. The governing equations involving coupled fluid flow and deformation processes in unsaturated soils are derived within the framework of the generalized Biot theory. The displacements of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the present formulation. The other variables are incorporated into the model using the experimentally determined functions that define the relationship between the hydraulic... 

    The evaluation of the confidence intervals for the state parameters of a DC power system

    , Article Journal of Engineering and Applied Sciences ; Volume 12, Issue 18 , 2017 , Pages 4544-4550 ; 1816949X (ISSN) Khan, Z ; Razalia, R ; Daud, H ; Norc, N. M ; Firuzabad, M. F ; Sharif University of Technology
    Abstract
    State estimation in power engineering is used as a tool to find the unknown parameter values from the hypothesized model by utilizing the specified information available about the system. Due to random noises that are added from different sources, the exact value of the state vector cannot be found. This study is an effort to describe the simultaneous and individual confidence intervals for the state parameters in view of the heteroscedastic structure of the error terms. The performance of the constructed intervals in terms of coverage probability has been evaluated by using the Monte Carlo simulation study. The results of the study demonstrate that it is an effective method for practical... 

    A coupled wellbore-reservoir flowmodel for numerical pressure transient analysis in vertically heterogeneous reservoirs

    , Article Journal of Porous Media ; Volume 16, Issue 5 , 2013 , Pages 395-400 ; 1091028X (ISSN) Khadivi, K ; Soltanieh, M ; Farhadpour, F. A ; Sharif University of Technology
    2013
    Abstract
    Pressure transient analysis in vertically heterogeneous reservoirs is examined. The inclusion of a separate model for the free fluid flow in the wellbore is essential to allow for hydraulic communication and mixing of the fluid issuing from different reservoir layers. A two-dimensional model coupling Darcy flow in the reservoir with Navier-Stokes flow in the wellbore is developed and solved by the finite element technique. The coupled wellbore-reservoir flow model is used to analyze a layered reservoir with an abrupt change in permeability and a thick formation showing a gradual change in permeability with depth. Contrary to conventional reservoir models, this new model is able to capture... 

    Effects of viscoelastic polymer solutions on the oil extraction from dead ends

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1912-1920 ; 2345-3605 (e-ISSN) Kamyabi, A ; Ramazani, A. S. A ; Kamyabi, M. M ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    This research deals with the numerical simulation of two viscoelastic uids ow in an open capillary of a reservoir. Oldroyd-B and Leonov models have been used to describe the rheological behavior of polymer solutions. The finite volume method on a structured and collocated grid has been used for discretization of the governing equations. The discrete elastic viscous stress splitting technique has also been used. The steady state, isothermal and incompressible uids past through a two dimensional micropore have been considered. The numerical method has been validated through the comparison of numerical results by the analytical solutions of Oldroyd-B uid ow through a planar channel. The effects...