Loading...
Search for: flow-modeling
0.014 seconds
Total 102 records

    Generation of Voronoi grid based on vorticity for coarse-scale modeling of flow in heterogeneous formations

    , Article Transport in Porous Media ; Volume 83, Issue 3 , Oct , 2010 , Pages 541-572 ; 01693913 (ISSN) Evazi, M ; Mahani, H ; Sharif University of Technology
    2010
    Abstract
    We present a novel unstructured coarse grid generation technique based on vorticity for upscaling two-phase flow in permeable media. In the technique, the fineness of the gridblocks throughout the domain is determined by vorticity distribution such that where the larger is the vorticity at a region, the finer are the gridblocks at that region. Vorticity is obtained from single-phase flow on original fine grid, and is utilized to generate a background grid which stores spacing parameter, and is used to steer generation of triangular and finally Voronoi grids. This technique is applied to two channelized and heterogeneous models and two-phase flow simulations are performed on the generated... 

    A new analytical model of a radial turbine and validation by experiments

    , Article IEEE Aerospace Conference Proceedings, 6 March 2010 through 13 March 2010 ; March , 2010 ; 1095323X (ISSN) ; 9781424438884 (ISBN) Pourfarzaneh, H ; Hajilouy Benisi, A ; Farshchi, M ; Sharif University of Technology
    2010
    Abstract
    In the conceptual design phase of a turbocharger, where emphasis is mainly on parametric studies, before manufacturing and tests, a generalized and robust model that applies over a wide range properly, is unavoidable. 12The critical inputs such as turbine maps are not available during the conceptual design phase. Hence, generalized turbine models use alternate methods that work without any supplementary tests and can operate over wide ranges. One of the common and applicable modeling methods in design process is 'Dimensionless Modeling' using the constant coefficient scaling (CCS). This method can almost predict the turbine characteristics at the design point. However, at off-design... 

    Duct design in subsonic and supersonic flow regimes with and without normal shock waves using Flexible String Algorithm

    , Article Scientia Iranica ; Volume 17, Issue 3 B , MAY-JUNE , 2010 , Pages 179-193 ; 10263098 (ISSN) Nili Ahmadabadi, M ; Durali, M ; Hajilouy Benisi, A ; Ghadak, F ; Sharif University of Technology
    2010
    Abstract
    In this investigation, the Flexible String Algorithm (FSA) used before for the inverse design of 2D subsonic ducts is developed and applied for the inverse design of subsonic and supersonic ducts with and without normal shock waves. In this method, the duct wall shape is changed under a novel algorithm based on the deformation of a virtual flexible string in a flow. Deformation of the string due to the local fl.ow conditions resulting from changes in the wall geometry is performed until the target shape satisfying the. prescribed walls pressure distribution is achieved. The flow field at each shape modification step is analyzed using an Euler equation solution by the. A USM method. Some... 

    A new analytical model of a centrifugal compressor and validation by experiments

    , Article Journal of Mechanics ; Volume 26, Issue 1 , 2010 , Pages 37-45 ; 17277191 (ISSN) Pourfarzaneh, H ; Hajilouy Benisi, A ; Farshchi, M ; Sharif University of Technology
    2010
    Abstract
    In the conceptual design phase of a turbocharger, where emphasis is mainly on parametric studies, before manufacturing and tests, a generalized and robust model that implies over a wide range properly, is unavoidable. The critical inputs such as compressor maps are not available during the conceptual design phase. Hence, generalized compressor models use alternate methods that work without any supplementary tests and can operate on wide range. One of the common and applicable modeling methods in design process is the 'Dimensionless Modeling' using the constant coefficient scaling (CCS). This method almost can predict the compressor characteristics at design point. However, at off design... 

    Geometry effects in Eulerian/Granular simulation of a turbulent FCC riser with a (kg-g)-KTGF model

    , Article International Journal of Chemical Reactor Engineering ; Volume 8 , 2010 ; 15426580 (ISSN) Nazif, H. R ; Basirat Tabrizi, H ; Farhadpour, F. A ; Sharif University of Technology
    Abstract
    Three-dimensional, transient turbulent particulate flow in an FCC riser is modeled using an Eulerian/Granular approach. The turbulence in the gas phase is described by a modified realizable (kg-g) closure model and the kinetic theory of granular flow (KTGF) is employed for the particulate phase. Separate simulations are conducted for a rectangular and a cylindrical riser with similar dimensions. The model predictions are validated against experimental data of Sommerfeld et al (2002) and also compared with the previously reported LES-KTGF simulations of Hansen et al (2003) for the rectangular riser. The (kg-g)-KTGF model does not perform as well as the LES-KTGF model for the riser with a... 

    A non-iterative approach for AC state estimation using line flow based model

    , Article International Journal of Electrical Power and Energy Systems ; Volume 43, Issue 1 , 2012 , pages 1413-1420 ; 1420615 (ISSN) Safdarian, A ; Fotuhi Firuzabad, M ; Aminifar, F ; Sharif University of Technology
    Abstract
    One of the underlying requirements in the present energy management systems (EMSs) is to have a complete understanding of the system status. This feature is realized via state estimation (SE) engine. This paper presents a new and efficient SE approach which leads to a desirable outcome using a non-iterative calculation. The proposed model is based on a new AC power flow formulation designated as the line flow based (LFB) model. The objective function is to minimize the weighted least square of measurement residuals. The developed method adopts the line flows and square of voltage magnitudes as the problem state variables and incorporates both active and reactive power quantities. The... 

    An Analytic Solution for the Frontal Flow Period in 1D Counter-Current Spontaneous Imbibition into Fractured Porous Media Including Gravity and Wettability Effects

    , Article Transport in Porous Media ; Volume 89, Issue 1 , 2011 , Pages 49-62 ; 01693913 (ISSN) Mirzaei Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    Abstract
    Including gravity and wettability effects, a full analytical solution for the frontal flow period for 1D counter-current spontaneous imbibition of a wetting phase into a porous medium saturated initially with non-wetting phase at initial wetting phase saturation is presented. The analytical solution applicable for liquid-liquid and liquid-gas systems is essentially valid for the cases when the gravity forces are relatively large and before the wetting phase front hits the no-flow boundary in the capillary-dominated regime. The new analytical solution free of any arbitrary parameters can also be utilized for predicting non-wetting phase recovery by spontaneous imbibition. In addition, a new... 

    Improvement of airlift pump performance based on the exergy analysis

    , Article Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010, 14 June 2010 through 17 June 2010, Lausanne ; Volume 1 , 2010 , Pages 489-497 ; 9781456303006 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Gholampour, P ; Shams, H ; Saidi, M. H ; Sharif University of Technology
    Aabo Akademi University  2010
    Abstract
    Airlift systems (ALS) are widely used in various fields such as petroleum and oil extracting industries. As gas-liquid two phase flow is the main part of the flow through these systems, the analysis of such systems accompanies with problems of two phase flow modeling. However, exergy analysis could be a simple method for modeling of airlift systems. In the present study, an analytical model based on thermodynamic principles has been implemented on each phase to analyze the performance of airlift systems. The experimental data were collected at a large scale multiphase flow test rig for the airlift pump with 6m height and diameter of 50 mm. Finally, irreversibility terms, energy destruction,... 

    Numerical study on boundary layer control using CH4[sbnd]H2[sbnd]air Micro-reacting jet

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 47 , 2016 , Pages 22433-22452 ; 03603199 (ISSN) Mardani, A ; Yahyavi Koochaksarai, M ; Javadi, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The focus of present numerical study is on assessment of control of laminar separation bubble phenomenon using Micro-scale combustion actuators in an airfoil with low Reynolds number under surface effect and free flows. In this way, the characteristics of laminar separation bubble such as its formation, geometry, and transition from laminar to turbulent around airfoil SD8020 in attack angles of 5 and 8° are investigated. Following that, the new combustion actuators in Micro-scale, cold, and hot air-jet injection are introduced to control boundary layer flow in terms of eliminating the separation bubble. Some mechanisms are identified for improvement of methane-air premixed flame... 

    An improvement on modeling of forced gravity drainage in dual porosity simulations using a new matrix-fracture transfer function

    , Article Transport in Porous Media ; Volume 94, Issue 1 , 2012 , Pages 207-223 ; 01693913 (ISSN) Samimi, S. E ; Masihi, M ; Gerami, S ; Ghazvini, M. G ; Sharif University of Technology
    Abstract
    In fractured oil reservoirs, the gravity drainage mechanism has great potentials to higher oil recovery in comparison with other mechanisms. Recently, the forced gravity drainage assisted by gas injection has also been considered; however, there are few comprehensive studies in the literature. Dual porosity model, the most common approach for simulation of fractured reservoirs, uses transfer function concept to represent the fluid exchange between matrix and its neighborhood fractures. This study compares the results of different available transfer functions with those of fine grid simulations when forced gravity drainage contributes to oil production from a single matrix block. These... 

    Unsteady RANS simulation of a surface piercing propeller in oblique flow

    , Article Applied Ocean Research ; Volume 56 , 2016 , Pages 79-91 ; 01411187 (ISSN) Alimirzazadeh, S ; Zabihzade Roshan, S ; Seif, M. S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Conventional propellers might undergo severe cavitation at high speeds and this phenomenon not only affects the efficiency of the propeller, but also may result in serious damages in propulsion system. Due to their special geometries, surface piercing propellers (SPPs) overcome this problem and achieve high efficiencies in high speeds. Therefore, SPPs are one of the popular propulsors for high-speed crafts. The present research is aimed to pursue SPP's performance in the off-design conditions. URANS method was used to study the performance of the 841-SPP (case with some available experimental results; Olofsson, 1996) in several immersion ratios (= 33%, 50%, 75% and 100%) and maneuvering... 

    Numerical study of AN ion injection EHD micropump

    , Article Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, 22 June 2009 through 24 June 2009 ; Issue PART A , 2009 , Pages 179-185 ; 9780791843499 (ISBN) Ghazi, R ; Saidi, M. S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The purpose of this study is to carry out a numerical investigation of injection type EHD pumps. To this end, the flow is considered laminar, steady and incompressible flow. The flow model is based on the assumptions that the fluid is Newtonian and the fluid properties are constant. The results show that all of the ions emitted from emitter are not collected by next collector electrode, but some of this injected ions move to the previous one, which causes back flow. Although this back flow is smaller than net pumping flow but it would reduce the net flow. Because of existence of this back flow, finding the optimum distance of electrodes from each other is necessary. This study shows that... 

    Improved upscaling of reservoir flow using combination of dual mesh method and vorticity-based gridding

    , Article Computational Geosciences ; Volume 13, Issue 1 , 2009 , Pages 57-78 ; 14200597 (ISSN) Firoozabadi, B ; Mahani, H ; Ashjari, M. A ; Audigane, P ; Sharif University of Technology
    Abstract
    A novel technique for upscaling of detailed geological reservoir descriptions is presented. The technique aims at reducing both numerical dispersion and homogenization error generated due to incorporating a coarse computational grid and assigning effective permeability to coarse-grid blocks, respectively. In particular, we consider implicit-pressure explicit-saturation scheme where homogenization error impacts the accuracy of the coarse-grid solution of the pressure equation. To reduce the homogenization error, we employ the new vorticity-based gridding that generates a non-uniform coarse grid with high resolution at high vorticity zones. In addition, to control numerical dispersion, we use... 

    Analytical study of fluid flow modeling by diffusivity equation including the quadratic pressure gradient term

    , Article Computers and Geotechnics ; Volume 89 , 2017 , Pages 1-8 ; 0266352X (ISSN) Abbasi, M ; Izadmehr, M ; Karimi, M ; Sharifi, M ; Kazemi, A ; Sharif University of Technology
    Abstract
    Diffusivity equation which can provide us with the pressure distribution, is a Partial Differential Equation (PDE) describing fluid flow in porous media. The quadratic pressure gradient term in the diffusivity equation is nearly neglected in hydrology and petroleum engineering problems such as well test analysis. When a compressible liquid is injected into a well at high pressure gradient or when the reservoir possess a small permeability value, the effect of ignoring this term increases. In such cases, neglecting this parameter can result in high errors. Previous models basically focused on numerical and semi-analytical methods for semi-infinite domain. To the best of our knowledge, no... 

    Investigation of obstacle effect to improve conjugate heat transfer in backward facing step channel using fast simulation of incompressible flow

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2017 , Pages 1-16 ; 09477411 (ISSN) Nouri Borujerdi, A ; Moazezi, A ; Sharif University of Technology
    Abstract
    The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In... 

    The evaluation of the confidence intervals for the state parameters of a DC power system

    , Article Journal of Engineering and Applied Sciences ; Volume 12, Issue 18 , 2017 , Pages 4544-4550 ; 1816949X (ISSN) Khan, Z ; Razalia, R ; Daud, H ; Norc, N. M ; Firuzabad, M. F ; Sharif University of Technology
    Abstract
    State estimation in power engineering is used as a tool to find the unknown parameter values from the hypothesized model by utilizing the specified information available about the system. Due to random noises that are added from different sources, the exact value of the state vector cannot be found. This study is an effort to describe the simultaneous and individual confidence intervals for the state parameters in view of the heteroscedastic structure of the error terms. The performance of the constructed intervals in terms of coverage probability has been evaluated by using the Monte Carlo simulation study. The results of the study demonstrate that it is an effective method for practical... 

    Predictive functional control for active queue management in congested TCP/IP networks

    , Article ISA Transactions ; Volume 48, Issue 1 , 2009 , Pages 107-121 ; 00190578 (ISSN) Bigdeli, N ; Haeri, M ; Sharif University of Technology
    2009
    Abstract
    Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based... 

    Investigation of obstacle effect to improve conjugate heat transfer in backward facing step channel using fast simulation of incompressible flow

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 54, Issue 1 , 2018 , Pages 135-150 ; 09477411 (ISSN) Nouri Borujerdi, A ; Moazezi, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In... 

    Simulation of a density current turbulent flow employing different RANS models: a comparison study

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 53-63 ; 10263098 (ISSN) Mehdizadeh, A ; Firoozabadi, B ; Sharif University of Technology
    2009
    Abstract
    The accuracy of Reynolds Averaged Navier-Stokes (RANS) turbulence models to predict the behavior of 2-D density currents has been examined. In this work, a steady density current is simulated by the k - ε, k - ε RNG, two-layer k - ε and modified v̄2 - f model, all of which are compared with the experimental data. Density currents, with a uniform velocity and concentration, enter a channel via a sluice gate into a lighter ambient fluid and move forward down-slope. The eddy-viscosity concept cannot accurately simulate this flow because of two stress production structures found within it. Results show that all isotropic models have a weak outcome on this current, but by improving the ability of... 

    Simulation of turbulent flow through porous media employing a v2f model

    , Article Scientia Iranica ; Volume 16, Issue 2 B , 2009 , Pages 159-167 ; 10263098 (ISSN) Bahoosh Kazerooni, R ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2009
    Abstract
    In this article, a v2f model is employed to conduct a series of computations of incompressible flow in a periodic array of square cylinders simulating a porous media. A Galerkin/least-squares finite element formulation employing equal order velocity-pressure elements is used to discretize the governing equations. The Reynolds number is varied from 1000 to 84,000 and different values of porosities are considered in the calculations. Results are compared to the available data in the literature. The v2f model exhibits superior accuracy with respect to κ - ε results and is closer to LES calculations. The macroscopic pressure gradients for all porosities studied showed a good agreement with...