Loading...
Search for: flow-of-fluids
0.014 seconds
Total 207 records

    A mass conservative scheme for simulating shallow flows over variable topographies using unstructured grid

    , Article Advances in Water Resources ; Volume 28, Issue 5 , 2005 , Pages 523-539 ; 03091708 (ISSN) Mohamadian, A ; Le Roux, D. Y ; Tajrishi, M ; Mazaheri, K ; Sharif University of Technology
    2005
    Abstract
    Most available numerical methods face problems, in the presence of variable topographies, due to the imbalance between the source and flux terms. Treatments for this problem generally work well for structured grids, but most of them are not directly applicable for unstructured grids. On the other hand, despite of their good performance for discontinuous flows, most available numerical schemes (such as HLL flux and ENO schemes) induce a high level of numerical diffusion in simulating recirculating flows. A numerical method for simulating shallow recirculating flows over a variable topography on unstructured grids is presented. This mass conservative approach can simulate different flow... 

    Fractal flow of inhomogeneous fluids over smooth inclined surfaces and determination of their fractal dimensions and universality classes

    , Article Journal of Physics Condensed Matter ; Volume 17, Issue 14 , 2005 , Pages S1219-S1227 ; 09538984 (ISSN) Maleki Jirsaraei, N ; Ghane Motlagh, B ; Baradaran, S ; Shekarian, E ; Rouhani, S ; Sharif University of Technology
    2005
    Abstract
    Patterns formed by the flow of an inhomogeneous fluid (suspension) over a smooth inclined surface were studied. It was observed that fractal patterns are formed. There exists a threshold angle for the inclination above which global fractal patterns are formed. This angle depends on the particle size of the suspension. We observed that there are two fractal dimensions for these patterns, depending on the area from which the pattern is extracted. If the pattern is taken from the top which only consists of the beginning steps of the pattern forming, one finds two fractal dimensions, i.e. 1.35-1.45 and 1.6-1.7, in which the first one is dominant. And if the entire pattern is taken, then fractal... 

    A new formulation toward unifying the velocity role in collocated variable arrangement

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 47, Issue 4 , 2005 , Pages 361-382 ; 10407790 (ISSN) Darbandi, M ; Bostandoost, S. M ; Sharif University of Technology
    2005
    Abstract
    One main challenge in numerical treatment of incompressible fluid flow problems is to suppress the decoupling of pressure and velocity fields. The challenge has prompted research toward suggesting and implementing various coupling strategies. In this work, a novel strategy which suitably couples pressure and velocity in a collocated grid arrangement is presented. The current strategy develops a unique cell-face velocity expression which provides infinite cell-face velocity magnitudes in the algorithm. A smoothing factor is incorporated in the cell-face velocity expression in order to produce a wide range of velocity magnitudes. The smoothing factor provides a smooth transition from an unreal... 

    Fluid flow and heat transfer around circular cylinders in the presence and no-presence of porous media

    , Article Journal of Porous Media ; Volume 7, Issue 3 , 2004 , Pages 239-247 ; 1091028X (ISSN) Layeghi, M ; Nouri Borujerdi, A ; Sharif University of Technology
    2004
    Abstract
    Steady-state laminar and incompressible fluid flow and forced-convection heat transfer from a circular cylinder and an array of circular cylinders in the presence and no-presence of porous media are investigated. Various mathematical and numerical models are compared and the effects of porous media on heat transfer enhancement are studied. Navier-Stokes equations are used for the analysis of laminar fluid flow and heat transfer. However, the Darcy and extended Darcy-Brinkman models are used for the analysis of fluid flow and heat transfer in porous media. The cylinders are at constant temperature and the analysis is restricted to the low- and intermediate-Peclet-number regimes (Pr = 1, Re ≤... 

    Study of mixed-convection heat transfer from an impinging jet to a solid wall using a finite-element method - Application to cooktop modeling

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 46, Issue 4 , 2004 , Pages 387-397 ; 10407790 (ISSN) Karzar Jeddi, M ; Kazemzadeh Hannani, S ; Farhanieh, B ; Sharif University of Technology
    2004
    Abstract
    The mixed-convection flow from a hot vertical impinging jet on a colder horizontal disc has been studied. The geometry is analogous to a conventional burning gas cooktop. A numerical simulation of the system has been carried out using the finite-element method to study the dependence of fluid flow and heat transfer on the geometric, thermal, and fluid flow parameters. Results show that heat transfer efficiency versus several parameters such as inlet velocity magnitude and flue gas temperature has an optimum value, in which heat transfer efficiency is maximum. With thermal conductivity of the solid wall, velocity angle, and solid wall diameter heat transfer efficiency has increasing behavior.... 

    Modelling of foam degradation in lost foam casting process

    , Article Journal of Materials Science ; Volume 39, Issue 14 , 2004 , Pages 4593-4603 ; 00222461 (ISSN) Mirbagheri, S. H. M ; Silk, J. R ; Davami, P ; Sharif University of Technology
    2004
    Abstract
    In this investigation a new model was developed to calculate gas pressure at the melt/foam interface (Gap) resulting from foam degradation during mould filling in the lost foam casting (LFC) process. Different aspects of the process, such as foam degradation, gas elimination, transient mass, heat transfer, and permeability of the refractory coating were incorporated into this model. A computational fluid dynamic (CFD) code was developed based on the numerical technique of the Solution Algorithm-Volume of Fluid (SOLA-VOF) utilizing model, for the simulation and prediction of the fluid flow in the LFC process. In order to verify the computational results of the simulation, a thin plate of grey... 

    Modelling the flow behaviour of steel under non-isothermal conditions

    , Article Materials Science and Technology ; Volume 19, Issue 8 , 2003 , Pages 1065-1069 ; 02670836 (ISSN) Serajzadeh, S ; Zebarjad, S. M ; Sharif University of Technology
    2003
    Abstract
    A mathematical model is proposed for evaluating flow behaviour under hot deformation conditions. The effects of dynamic recovery and recrystallisation as well as temperature and strain rate variations are considered in the model by means of Bergstrom's approach and the additivity rule for strain. To verify the model, hot compression tests for three grades of steel together with upsetting experiments are carried out. Comparison between experimental and theoretical results confirms the reliability of the model. © 2003 IoM Communications Ltd. Published by Maney for the Institute of Materials, Minerals and Mining