Loading...
Search for: flow-of-fluids
0.013 seconds

    Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics

    , Article Transport in Porous Media ; Volume 74, Issue 3 , 2008 , Pages 331-346 ; 01693913 (ISSN) Vakilha, M ; Manzari, M. T ; Sharif University of Technology
    2008
    Abstract
    The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy's law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can... 

    Theoretical modeling and optimizing design of a packaged liquid chiller

    , Article 2007 ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007, Vancouver, BC, 8 July 2007 through 12 July 2007 ; July , 2007 , Pages 527-537 ; 0791842746 (ISBN); 9780791842744 (ISBN) Heydari, A ; Kargar, S ; Sharif University of Technology
    2007
    Abstract
    This work attempts to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of a packaged liquid chiller. A computer model which simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection... 

    Three-dimensional structures in experimental density currents

    , Article 2007 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007, San Diego, CA, 30 July 2007 through 2 August 2007 ; Volume 1 SYMPOSIA, Issue PART A , March , 2007 , Pages 781-787 ; 0791842886 (ISBN); 9780791842881 (ISBN) Firoozabadi, B ; Afshin, H ; Safaaee, E ; Sharif University of Technology
    2007
    Abstract
    Density currents are continuous currents which move down-slope due to the fact that their density is greater than that of ambient water. The density difference is caused by temperature differences, chemical elements, dissolved materials, or suspended sediment. Many researchers have studied the density current structures, their complexities and uncertainties. However, there is not a detailed 3-D turbulent density current data set perfectly. In this work, the structure of 3-dimensional salt solution density currents is investigated. A laboratory channel was used to study the flow resulting from the release of salt solution into freshwater over an inclined bed. The experiments were conducted... 

    Multiscale modeling of fluid turbulence and flocculation in fiber suspensions

    , Article Journal of Applied Physics ; Volume 100, Issue 3 , 2006 ; 00218979 (ISSN) Jafari, A ; Zamankhan, P ; Mousavi, S. M ; Henttinen, K ; Sharif University of Technology
    2006
    Abstract
    A mathematically rigorous, multiscale modeling methodology capable of coupling behaviors from the Kolmogorov turbulence scale through the full scale system in which a fiber suspension is flowing is presented. Here the key aspect is adaptive hierarchical modeling. Numerical results are presented focus of which are on fiber floe formation and destruction by hydrodynamic forces in turbulent flows. Specific consideration was given to molecular-dynamics simulations of viscoelastic fibers in which the fluid flow is predicted by a method which is a hybrid between direct numerical simulations and large eddy simulation techniques, and fluid fibrous structure interactions were taken into account. The... 

    Improved advection algorithm of computational modeling of free surface flow using structured grids

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 195, Issue 7-8 , 2006 , Pages 775-795 ; 00457825 (ISSN) Babaei, R ; Abdollahi, J ; Homayonifar, P ; Varahram, N ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    In the present study a finite difference method has been developed to model the transient fluid flow and heat transfer. A single fluid has been selected for modeling of mold filling and The SOLA-VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. The model was then evaluated with the experimental methods. Refereeing to the experimental and simulation results a good consistency and the accuracy of the suggested model are confirmed. © 2005 Published by Elsevier B.V  

    Stagnation-point flow of upper-convected maxwell fluids

    , Article International Journal of Non-Linear Mechanics ; Volume 41, Issue 10 , 2006 , Pages 1242-1247 ; 00207462 (ISSN) Sadeghy, K ; Hajibeygi, H ; Taghavi, M ; Sharif University of Technology
    2006
    Abstract
    Two-dimensional stagnation-point flow of viscoelastic fluids is studied theoretically assuming that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary-layer theory is used to simplify the equations of motion which are further reduced to a single non-linear third-order ODE using the concept of stream function coupled with the technique of the similarity solution. The equation so obtained was solved using Chebyshev pseudo-spectral collocation-point method. Based on the results obtained in the present work, it is concluded that the well-established but controversial prediction that in stagnation-point flows of viscoelastic fluids the velocity inside the boundary layer may exceed... 

    Meshless solution of 2D fluid flow problems by subdomain variational method using MLPG method with radial basis functions (RBFS)

    , Article 2006 ASME Joint U.S.- European Fluids Engineering Division Summer Meeting, FEDSM2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 1 SYMPOSIA , 2006 , Pages 333-341 ; 0791847500 (ISBN); 9780791847503 (ISBN) Haji Mohammadi, M ; Shamsai, A ; Sharif University of Technology
    2006
    Abstract
    This paper deals with the solution of two-dimensional fluid flow problems using the truly meshless Local Petrov-Galerkin (MLPG) method. The present method is a truly meshless method based only on a number of randomly located nodes. Radial basis functions (RBF) are employed for constructing trial functions in the local weighted meshless local Petrov-Galerkin method for two-dimensional transient viscous fluid flow problems. No boundary integration is needed, no element matrix assembly is required and no special treatment is needed to impose the essential boundary conditions due to satisfaction of kronecker delta property in RBFs. Three different radial basis functions (RBFs), i.e.... 

    Numerical modeling of flow over a dam spillway

    , Article 2006 2nd ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2006 , 2006 ; 0791837831 (ISBN); 9780791837832 (ISBN) Saeedpanah, I ; Shayanfar, M ; Jabbari, E ; Haji Mohammadi, M ; Sharif University of Technology
    2006
    Abstract
    Free surface flows are frequently encountered in hydraulic engineering problems including water jets, weirs and around gates. An iterative solution to the incompressible two-dimensional vertical steady Navier-Stokes equations, comprising momentum and continuity equations, is used to solve for the priori unknown free surface, the velocity and the pressure fields. The entire water body is covered by a unstructured finite element grid which is locally refined. The dynamic boundary condition is imposed for the free surface where the pressure vanishes. This procedure is done continuously until the normal velocities components vanish. To overcome numerical errors and oscillations encountering in... 

    Approach to analytic solution of navier-stokes equation utilizing adomian decomposition method, jet impinging flow application

    , Article WSEAS Transactions on Mathematics ; Volume 5, Issue 5 , 2006 , Pages 507-514 ; 11092769 (ISSN) Najafi, M ; Taeibi Rahni, M ; Javadi, K. H ; Hosseinzadeh, S. F ; Sharif University of Technology
    2006
    Abstract
    Adomian decomposition method was employed to obtain an approximate solution to two-dimensional and axisymmetric jet impinging flows in this work. Assumptions have been made to reduce the related full Navier-Stokes equations to a non-linear ordinary differential equation. A trial and error strategy has been used to obtain the constant coefficient in the approximated solution. Velocity Profiles, Shear stresses and displacement thickness were chosen to be compared with accurate numerical data. Sensitivity of the results to the number of terms have been discussed. The results showed for open boundary problems having at least one boundary condition at infinity, the applicable range of the... 

    Heat transfer and fluid flow in porous media with two equations Non-Darcian model

    , Article 2005 ASME Fluids Engineering Division Summer Conference, Houston, TX, 19 June 2005 through 23 June 2005 ; Volume 2 , 2005 , Pages 637-640 ; 0791841987 (ISBN); 9780791841983 (ISBN) Nouri Borujerdi, A ; Nazari, M ; Sharif University of Technology
    2005
    Abstract
    In the present study criterion for local thermal equilibrium assumption is studied. It concerns with the fluid flow and heat transfer between two parallel plates filled with a saturated porous medium under non-equilibrium condition. A two-equation model is utilized to represent the fluid and solid energy transport. Numerical Finite Volume Method has been developed for solving coupled energy equations and the Non-Darcian effects are considered for description of momentum equation. The effects of suitable non dimensional parameters as Peclet number and conductivity ratio has been studied thoroughly. A suitable non dimensional equation proposed in wide range of Peclet number and conductivity... 

    Effect of inlet air cooling by absorption chiller on gas turbine and combined cycle performance

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 45 , 2005 , Pages 507-515 ; 10716947 (ISSN) Khaledi, H ; Zomorodian, R ; Ghofrani, M. B ; Sharif University of Technology
    2005
    Abstract
    Gas turbine performances are directly related to site conditions. The use of gas turbines in combined gas-steam power plants, also applied to cogeneration, increases such dependence. In recent years, inlet air cooling systems have been introduced to control air temperature at compressor inlet, resulting in an increase in plant power and efficiency. In this paper, the dependence of outside conditions for a simple gas turbine and a combined cycle plant is studied, using absorption chiller as inlet air cooling system. We used, as case study, a simple plant equipped with one frame E gas turbine and a combined cycle with a two pressure level heat recovery steam generator (HRSG). It was found that... 

    Analysis of micro channel heat sink performance

    , Article 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Portland, OR, 7 June 2005 through 9 June 2005 ; 2005 , Pages 1911-1918 ; 0912053909 (ISBN) Saidi, M. H ; Salehi, M ; Khiabani, R. H ; Sharif University of Technology
    2005
    Abstract
    In the present research a numerical investigation has been made to evaluate the results of analytical approach in the analysis of micro channel heat sink (MCHS) which is increasingly used in the cooling of high heat dissipating electronic devices. In this regard the effects of geometrical and flow parameters affecting the absolute thermal resistance of MCHS have been analyzed. The effect of using different fluids in the value of the thermal resistance is considered as well. The accuracy of analytical method in predicting heat transfer and fluid flow regimes in micro channel is checked in comparison with numerical method. The effects of hydraulic and thermal entrance lengths of these systems... 

    Analysis and optimized design of a packaged liquid chiller (part I -Analytical modelling)

    , Article 2005 ASME Summer Heat Transfer Conference, HT 2005, San Francisco, CA, 17 July 2005 through 22 July 2005 ; Volume 4 , 2005 , Pages 461-466 ; 0791847314 (ISBN); 9780791847312 (ISBN) Heydari, A ; Kargar, S ; Sharif University of Technology
    2005
    Abstract
    The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of a packaged liquid chiller. A computer model which simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and... 

    Performance and stability enhancement of NASA Rotor 37 applying abradable coating

    , Article ASME Turbo Expo 2005 - Gas Turbie Technology: Focus for the Future, Reno-Tahoe, NV, 6 June 2005 through 9 June 2005 ; Volume 6 PART A , 2005 , Pages 93-102 Beheshti, B. H ; Farhanieh, B ; Ghorbanian, K ; Teixeira, J. A ; Ivey, P. C ; ASME International Gas Turbine Institute ; Sharif University of Technology
    2005
    Abstract
    Improvements in sealing mechanism between the rotating and the stationary parts of a rurbomachine can extensively reduce the endwall leakage flow. In this regard, abradable seals are incorporated into compressor and turbine blade-tip region. In a gas turbine, equipped with abradable seals, tip of the rotor blade is designed to cut into the material coating of the casing and to form a close fitted circumferential groove for the movement of the blade tip. As a result, the resistance to the leakage flow in the tip gap region increases due to smaller tip clearances (available without any rub-induced damages). Minimizing the tip clearance size can lead to an increase in performance and stability.... 

    Analysis of fluid flow and heat transfer in microchannels using combined pressure gradient and electroosmotic pumping

    , Article 3rd International Conference on Microchannels and Minichannels, ICMM2005, Toronto, ON, 13 June 2005 through 15 June 2005 ; Volume PART A , 2005 , Pages 503-510 ; 0791841855 (ISBN) Monazarami, R ; Zade, A. Q ; Manzari, M. T ; Sharif University of Technology
    2005
    Abstract
    A numerical model has been developed for studying the flow and heat transfer characteristics of single phase liquid flow through a microchannel. In this work the heat transfer characteristics of pressure driven and electroosmotic flow through microchannels have been studied. The governing equations are the Poisson-Boltzmann and Navier-Stokes equations which have been solved numerically using the standard Galerkin and the Mixed 4-1 finite element methods, respectively. Finally the energy equation is solved numerically using the Stream-wise Upwind Petrov Galerkin (SUPG) method. Two dimensional Poisson-Boltzmann equation was first solved to find the electric potential field and net charge... 

    Performance enhancement in transonic axial compressors using blade tip injection coupled with casing treatment

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 219, Issue 5 , 2005 , Pages 321-331 ; 09576509 (ISSN) Beheshti, B. H ; Farhanieh, B ; Ghorbanian, K ; Teixeira, J. A ; Ivey, P. C ; Sharif University of Technology
    2005
    Abstract
    The casing treatment and flow injection upstream of the rotor tip are two effective approaches in suppressing instabilities or recovering from a fully developed stall. This paper presents numerical simulations for a high-speed transonic compressor rotor, NASA Rotor 37, applying a state-of-the-art design for the blade tip injection. This is characterized by introducing a jet flow directly into the casing treatment machined into the shroud. The casing treatment is positioned over the blade tip region and exceeds the impeller axially by ∼30 per cent of the tip chord both in the upstream and in the downstream directions. To numerically solve the governing equations, the three-dimensional finite... 

    A mass conservative scheme for simulating shallow flows over variable topographies using unstructured grid

    , Article Advances in Water Resources ; Volume 28, Issue 5 , 2005 , Pages 523-539 ; 03091708 (ISSN) Mohamadian, A ; Le Roux, D. Y ; Tajrishi, M ; Mazaheri, K ; Sharif University of Technology
    2005
    Abstract
    Most available numerical methods face problems, in the presence of variable topographies, due to the imbalance between the source and flux terms. Treatments for this problem generally work well for structured grids, but most of them are not directly applicable for unstructured grids. On the other hand, despite of their good performance for discontinuous flows, most available numerical schemes (such as HLL flux and ENO schemes) induce a high level of numerical diffusion in simulating recirculating flows. A numerical method for simulating shallow recirculating flows over a variable topography on unstructured grids is presented. This mass conservative approach can simulate different flow... 

    Fractal flow of inhomogeneous fluids over smooth inclined surfaces and determination of their fractal dimensions and universality classes

    , Article Journal of Physics Condensed Matter ; Volume 17, Issue 14 , 2005 , Pages S1219-S1227 ; 09538984 (ISSN) Maleki Jirsaraei, N ; Ghane Motlagh, B ; Baradaran, S ; Shekarian, E ; Rouhani, S ; Sharif University of Technology
    2005
    Abstract
    Patterns formed by the flow of an inhomogeneous fluid (suspension) over a smooth inclined surface were studied. It was observed that fractal patterns are formed. There exists a threshold angle for the inclination above which global fractal patterns are formed. This angle depends on the particle size of the suspension. We observed that there are two fractal dimensions for these patterns, depending on the area from which the pattern is extracted. If the pattern is taken from the top which only consists of the beginning steps of the pattern forming, one finds two fractal dimensions, i.e. 1.35-1.45 and 1.6-1.7, in which the first one is dominant. And if the entire pattern is taken, then fractal... 

    A new formulation toward unifying the velocity role in collocated variable arrangement

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 47, Issue 4 , 2005 , Pages 361-382 ; 10407790 (ISSN) Darbandi, M ; Bostandoost, S. M ; Sharif University of Technology
    2005
    Abstract
    One main challenge in numerical treatment of incompressible fluid flow problems is to suppress the decoupling of pressure and velocity fields. The challenge has prompted research toward suggesting and implementing various coupling strategies. In this work, a novel strategy which suitably couples pressure and velocity in a collocated grid arrangement is presented. The current strategy develops a unique cell-face velocity expression which provides infinite cell-face velocity magnitudes in the algorithm. A smoothing factor is incorporated in the cell-face velocity expression in order to produce a wide range of velocity magnitudes. The smoothing factor provides a smooth transition from an unreal... 

    Fluid flow and heat transfer around circular cylinders in the presence and no-presence of porous media

    , Article Journal of Porous Media ; Volume 7, Issue 3 , 2004 , Pages 239-247 ; 1091028X (ISSN) Layeghi, M ; Nouri Borujerdi, A ; Sharif University of Technology
    2004
    Abstract
    Steady-state laminar and incompressible fluid flow and forced-convection heat transfer from a circular cylinder and an array of circular cylinders in the presence and no-presence of porous media are investigated. Various mathematical and numerical models are compared and the effects of porous media on heat transfer enhancement are studied. Navier-Stokes equations are used for the analysis of laminar fluid flow and heat transfer. However, the Darcy and extended Darcy-Brinkman models are used for the analysis of fluid flow and heat transfer in porous media. The cylinders are at constant temperature and the analysis is restricted to the low- and intermediate-Peclet-number regimes (Pr = 1, Re ≤...