Loading...
Search for: flow-of-fluids
0.013 seconds
Total 207 records

    Lattice Boltzmann simulation of convective flow and heat transfer in a nanofluid-filled hollow cavity

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 29, Issue 9 , 2019 , Pages 3075-3094 ; 09615539 (ISSN) Pu, Q ; Aalizadeh, F ; Aghamolaei, D ; Masoumnezhad, M ; Rahimi, A ; Kasaeipoor, A ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: This paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method. Design/methodology/approach: The double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is... 

    Natural convection of Al2O3-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon

    , Article International Journal of Thermal Sciences ; Volume 105 , 2016 , Pages 137-158 ; 12900729 (ISSN) Esfandiary, M ; Mehmandoust, B ; Karimipour, A ; Pakravan, H. A ; Sharif University of Technology
    Elsevier Masson SAS 
    Abstract
    Effects of inclination angle on natural convective heat transfer and fluid flow in an enclosure filled with Al2O3-water nanofluid are studied numerically. The left and right walls of enclosure are kept in hot and cold constant temperature while the other two walls are assumed to be adiabatic. Considering Brownian motion and thermophoresis effect (two important slip velocity mechanisms) the two-phase mixture model has been employed to investigate the flow and thermal behaviors of the nanofluid. The study was performed for various inclination angles of enclosure ranging from γ = 0° to γ = 60°, volume fraction from 0% to 3%, and Rayleigh numbers varying from 105 to 107. The governing equations... 

    Evaluation of a pressure splitting formulation for Weakly Compressible SPH: Fluid flow around periodic array of cylinders

    , Article Computers and Mathematics with Applications ; 2016 ; 08981221 (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a pressure splitting formulation is proposed for Weakly Compressible SPH (WC-SPH) method and its capability in the suppression of the spurious oscillations is studied by conducting a stability analysis. The proposed formulation is implemented within the framework of a consistent SPH method. The predictions from the theoretical analysis are verified by the results of numerical test-cases. This method is applied to the incompressible fluid flow around periodic array of circular cylinders. The accuracy and the convergence of the results are investigated for benchmark problems. The results are also compared with those of the conventional WC-SPH method. In a similar test-case, the... 

    Porous media approach in thermohydraulic analysis of high temperature reactors in pressurized/depressurized cooldown: An improvement

    , Article Progress in Nuclear Energy ; Volume 80 , 2015 , Pages 119-127 ; 01491970 (ISSN) Nouri Borujerdi, A ; Tabatabai Ghomsheh, S. I ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The current study aims at introducing a 2D and fast-running code for the issues pertinent to design, analysis and safety in modular high temperature reactors. While the porous media approach is only applied to pebble bed type, the analysis in this paper covers both pebble bed and prismatic reactor. A time-dependent mass equation along with energy conservation equation for the cooling gas and a time-dependent energy conservation equation for the solid was solved. Appropriate series of constitutive equations (e.g. heat transfer coefficient, effective heat conductivity of solid, heat transfer coefficient, pressure drop etc.) has been recruited as well. In addition a finite-volume method is... 

    An improved porous media approach to thermal-hydraulics analysis of high-temperature gas-cooled reactors

    , Article Annals of Nuclear Energy ; Volume 76 , February , 2015 , Pages 485-492 ; 03064549 (ISSN) Nouri Borujerdi, A ; Tabatabai Ghomsheh, S. I ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A precise thermal-hydraulics model is of great importance for developing more effective designs of High Temperature Gas Cooled Reactors (HTGR). Recently, several advancements have been made in the methods of analysis of porous media which could be of significant value in the development of more precise and robust codes. The objective of this research is to incorporate some of the most recent improvements in the development of a new 2D program for thermal-hydraulics analysis of modular high temperature reactors. The program is mainly based on the solution of a coupled set of mass, energy and momentum conservation equations for the gas flow, along with the energy conservation equation in the... 

    Numerical optimization and inverse study of a microfluidic device for blood plasma separation

    , Article European Journal of Mechanics, B/Fluids ; Volume 57 , 2016 , Pages 31-39 ; 09977546 (ISSN) Shamloo, A ; Vatankhah, P ; Bijarchi, M. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a passive microfluidic device for continuous real time blood plasma separation has been studied and optimized. A numerical model is used to solve both the fluid flow and the particles confined within it. Red blood cells are considered as particles with diameter of 7μm. A parametric study is performed in order to characterize the effect of different parameters on separation and purity efficiency. In this study, four different variables were introduced to design the microfluidic device for blood plasma separation including: the angle between the daughter channels and the main channel, the widths, the diffuse angle and the number of daughter channels. Results show that the... 

    Nonlinear dynamics of extensible viscoelastic cantilevered pipes conveying pulsatile flow with an end nozzle

    , Article International Journal of Non-Linear Mechanics ; Volume 91 , 2017 , Pages 22-35 ; 00207462 (ISSN) Askarian, A. R ; Haddadpour, H ; Dehghani Firouz Abadi, R ; Abtahi, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Nonlinear dynamics of an extensible cantilevered pipe conveying pulsating flow is considered in this paper. The fluid flow fluctuates harmonically and exhausts via a nozzle attached to the end of the pipe. Taking into account the extensibility assumption, the coupled nonlinear lateral–longitudinal equations of motion are derived using Hamilton's principle and discretized via Galerkin's method. The adaptive time step Adams algorithm is applied to extract the time response, and then the bifurcation, power spectral density and phase plane maps are plotted for some case studies. Effects of some geometrical parameters such as flow mass, pulsating flow frequency, gravity, nozzle mass and nozzle... 

    Convective-heat transfer of magnetic-sensitive nanofluids in the presence of rotating magnetic field

    , Article Applied Thermal Engineering ; Volume 116 , 2017 , Pages 329-343 ; 13594311 (ISSN) Fadaei, F ; Molaei Dehkordi, A ; Shahrokhi, M ; Abbasi, Z ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this work, forced-convection heat transfer of magnetic-sensitive nanofluids has been investigated in the presence of rotating magnetic field. In this regard, the laminar, Newtonian, incompressible, and two-dimensional (2D) fluid flow in a horizontal duct subject to constant wall temperature boundary condition was modeled. Moreover, the fluid was supposed to be non-electrical conductive and the magnetic field source comprised of two time varying components perpendicular to each other. Influences of magnetic field intensity and frequency, inlet fluid velocity, and spin viscosity on the forced-convection heat transfer of the magnetic nanofluids were investigated. It was found that the... 

    Dynamics and stability of conical/cylindrical shells conveying subsonic compressible fluid flows with general boundary conditions

    , Article International Journal of Mechanical Sciences ; Volume 120 , 2017 , Pages 42-61 ; 00207403 (ISSN) Rahmanian, M ; Firouz Abadi, R. D ; Cigeroglu, E ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A fast and efficient reduced order formulation is presented for the first time to study dynamics and stability of conical/cylindrical shells with internal fluid flows. The structural and fluid formulations are developed based on general assumptions to avoid any deficiency due to modeling. Their respective solutions and the final solution to the coupled field problem are also developed in a way to be capable of capturing any desirable set of boundary conditions. In addition to the flexibility provided by the solution methodology and generalization provided by the formulation, current solution proposes an additional advantage over others which is the minimal computational cost due to the... 

    Extrinsically enriched element free Galerkin method for heat and fluid flow in deformable porous media involving weak and strong discontinuities

    , Article Computers and Geotechnics ; Volume 103 , 2018 , Pages 179-192 ; 0266352X (ISSN) Iranmanesh, M. A ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, an extrinsically enriched element free Galerkin (EFG) method is proposed for the thermo-hydro-mechanical simulation of saturated porous media. By taking advantage of partition of unity property of moving least square shape functions, weak discontinuities such as material interfaces are modeled using the Ridge enrichment function and impermeable strong discontinuities are simulated using the Heaviside function. Some guidelines are proposed for the selection of EFG numerical parameters to ensure the stability and accuracy of the results. Numerical examples are provided to illustrate the capability of the proposed approach for fully coupled THM analysis of discontinuous porous... 

    Non-isothermal simulation of the behavior of unsaturated soils using a novel EFG-based three dimensional model

    , Article Computers and Geotechnics ; Volume 99 , 2018 , Pages 93-103 ; 0266352X (ISSN) Iranmanesh, M. A ; Pak, A ; Samimi, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, a three-dimensional simulation of fully coupled multiphase fluid flow and heat transfer through deforming porous media is presented in the context of EFG mesh-less method. Spatial discretization of the system of governing equations is performed using EFG and a fully implicit finite difference scheme is employed for temporal discretization. Penalty method is used for imposition of essential boundary conditions. The developed numerical tool is employed to simulate two problems of nuclear waste disposal and CO2 sequestration in deep underground strata. The obtained results demonstrate the capability and robustness of the developed EFG code. © 2018 Elsevier Ltd  

    Heat transfer on topographically structured surfaces for power law fluids

    , Article International Journal of Heat and Mass Transfer ; Volume 121 , 2018 , Pages 857-871 ; 00179310 (ISSN) Javanbakht, M. H ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The three-dimensional power law fluid flow through rough microchannels has been studied numerically to determine the effects of the topographic structures on the thermal and hydrodynamic characteristics of the system. Rectangular, triangular and sinusoidal element shapes have been considered in order to investigate the effects of roughness height, width, pitch and channel separation on the pressure drop and heat transfer. Uniform wall heat flux boundary condition has been applied for all the peripheral walls. The results indicate that the global heat transfer performance can be improved or reduced by the roughness elements at the expense of pressure head when compared with the smooth... 

    Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids

    , Article Journal of Cleaner Production ; Volume 175 , 2018 , Pages 294-313 ; 09596526 (ISSN) Marefati, M ; Mehrpooya, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Optical and thermal analysis of the most well-known solar concentrator system; parabolic trough collector (PTC) are investigated and analyzed. To evaluate performance of the PTC, four cities of Iran with different weather conditions are chosen as case studies. Effective parameters such as concentration ratio, incident angle correction factor, collector mass flow rate are considered. The main objective of this work is evaluation of the solar energy potential using PTC in under consideration cities with different climates. Numerical modeling of the analysis is done using MATLAB software. Simulation results shows that Shiraz, with an average annual thermal efficiency of 13.91% and annual useful... 

    A multiphysics model for analysis of droplet formation in electrohydrodynamic 3D printing process

    , Article Journal of Aerosol Science ; Volume 135 , 2019 , Pages 72-85 ; 00218502 (ISSN) Mohammadi, K ; Movahhedy, M. R ; Khodaygan, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Electrohydrodynamic (EHD) printing is a novel technology used for fabricating high-resolution part features from a wide range of materials. Due to the multiphysics dynamics and the multiphase nature of the microdroplet formation in the EHD printers, modeling of this phenomenon is complicated. In this paper, the formation of a droplet in an EHD printer—under a pulsed electrical field—is simulated using a new numerical model which couples the fluid flow, the electric field distribution and the movement of the electric charges under dynamic and transient conditions. The level-set method is applied to the entire multiphysics domain in order to study the formation of the droplet. The presented... 

    New hybrid finite volume-thermal lattice Boltzmann method, based on multi relaxation time collision operator

    , Article International Journal of Heat and Mass Transfer ; Volume 138 , 2019 , Pages 1281-1294 ; 00179310 (ISSN) Salimi, M. R ; Alizadeh Seresht, E ; Taeibi Rahni, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Hybrid FVM-LBM schemes are developed in the past few years to use capabilities of both Navier-Stokes based finite volume method (FVM) and lattice Boltzmann method (LBM) to solve macro-meso multiscale problems. In this scheme, the major task is to develop some lifting relations that reconstruct distribution functions in LBM sub-domain from macroscopic variables and their derivatives. The macroscopic variables are computed using Navier-Stokes based FVM in macroscale sub-domain, while distribution functions are computed using LBM in mesoscale sub-domain. The pioneer works in this area used the single relaxation time (SRT) version of LBM. However, it is known that the numerical stability and... 

    A coupled geochemical and fluid flow model to simulate permeability decline resulting from scale formation in porous media

    , Article Applied Geochemistry ; Volume 107 , 2019 , Pages 131-141 ; 08832927 (ISSN) Shabani, A ; Kalantariasl, A ; Abbasi, S ; Shahrabadi, A ; Aghaei, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Scale precipitation due to the mixing of incompatible injected water with formation brine and its subsequent deposition in porous media is an unpleasant phenomenon in water injection projects that can lead to severe injectivity and productivity decline. As a result of the complexity of geochemical reactions, modelling scale precipitation and deposition is a challenge. This paper presents a coupled geochemical and fluid flow model to simulate reactive flow in porous media which models pressure difference increase resulting from scale formation during water injection into porous media. To simulate chemical reactions during scale formation and subsequent rock permeability decline, PHREEQC... 

    Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchangers

    , Article Applied Thermal Engineering ; Volume 156 , 2019 , Pages 494-505 ; 13594311 (ISSN) Erfanian Nakhchi, M ; Esfahani, J. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A numerical study has been performed to investigate the flow and heat transfer characteristics of fluid flow through heat exchanger tubes fitted with perforated conical rings. The holes are circular, and the number of holes N is ranged from 0 to 10. The influences of perforated conical ring diameter ratios D2/D1=0.4,0.5and0.6 and the hole diameter ratios d/D=0.06,0.1and0.14 on average Nusselt number, friction factor and thermal performance factor are reported. This analysis is performed in the turbulent flow regime 4000⩽Re⩽14,000 and the governing equations are solved by using (RNG) k-∊ model. Due to strong turbulent intensity, perforated conical rings lead to more flow perturbation and... 

    Vibration analysis of pipes conveying fluid resting on a fractional Kelvin-Voigt viscoelastic foundation with general boundary conditions

    , Article International Journal of Mechanical Sciences ; Volume 179 , 2020 Askarian, A. R ; Permoon, M. R ; Shakouri, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, the stability of pipes conveying fluid with viscoelastic fractional foundation is investigated. The pipe is fixed at the beginning while the pipe end is constrained with two lateral and rotational springs. The fluid flow effect is modeled as a lateral distributed force, containing the fluid inertia, Coriolis and centrifugal forces. The pipe is modeled using the Euler-Bernoulli beam theory and a fractional Kelvin-Voigt model is employed to describe the viscoelastic foundation. The equation of motion is derived using the extended Hamilton's principle. Presenting the derived equation in Laplace domain and applying the Galerkin method, a set of algebraic equations is extracted.... 

    Numerical simulation of proppant transport and tip screen-out in hydraulic fracturing with the extended finite element method

    , Article International Journal of Rock Mechanics and Mining Sciences ; Volume 128 , 2020 Hosseini, N ; Khoei, A. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a numerical model is developed based on the X-FEM technique to simulate the proppant transport and tip screen-out in hydraulic fracturing. The governing equations are based on the momentum balance and mass conservation of the fluid. The hydro-mechanical coupling between the fracture and surrounding porous medium is fulfilled through the weak form of the governing equations. The fluid inflow within the fracture is modeled using the one-dimensional mass conservation of the injected slurry and proppant along the fracture, in which the viscosity of the slurry is dependent on the proppant concentration. The transition from the Poiseuille to Darcy flow regime is incorporated into... 

    A year-round study of a photovoltaic thermal system integrated with phase change material in Shanghai using transient model

    , Article Energy Conversion and Management ; Volume 210 , 2020 Kazemian, A ; Salari, A ; Ma, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the study, the daily and monthly performance of a photovoltaic thermal system integrated with phase change material is investigated in Shanghai, China. A three-dimensional model of photovoltaic thermal system integrated with phase change material system is developed and numerically simulated. Water is considered as working fluid, and the fluid flow regime is laminar and incompressible. Both quasi-steady and transient models are compared together, and the transient model is selected because of its higher accuracy. Validation analysis is performed on the numerical model to show the reasonable agreement of current research compared to some other research. After obtaining the suitable...