Loading...
Search for: flow-of-fluids
0.008 seconds

    Implicit finite volume method to simulate reacting flow

    , Article 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 10 January 2005 through 13 January 2005 ; 2005 , Pages 7563-7573 Darbandi, M ; Banaeizadeh, A ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2005
    Abstract
    In this work, an efficient bi-implicit strategy is suitably developed within the context of a finite volume element approach in order to solve turbulent reactive flow governing equations. Based on the essence of control-volume-based finite-element methods, the formulation retains the geometrical flexibility of the pure finite element methods while derives the discrete algebraic governing equations through using the conservation balance applied to discrete control volumes distributed all over the solution domain. The physical influence upwinding scheme is used to approximate the advection fluxes at all cell faces. While respecting the physics of flow, this scheme also provides the necessary... 

    Optimization of the pem fuel cell cooling system by entropy generation minimization

    , Article 3rd International Conference on Fuel Cell Science, Engineering, and Technology, 2005, Ypsilanti, MI, 23 May 2005 through 25 May 2005 ; 2005 , Pages 441-448 ; 0791837645 (ISBN); 9780791837641 (ISBN) Sharifian, L ; Saidi, M. H ; Sharif University of Technology
    American Society of Mechanical Engineers  2005
    Abstract
    Cooling system is essential for high power fuel cells to maintain cells temperature in an acceptable limit. In this paper a suitable cooling system for the PEM fuel cell has been designed and optimized. The design includes the number of the cooling plates, the proper circuit of the cooling channels in the plates, the channel dimensions, the flow rate of the cooling fluid and its temperature. The optimization technique is minimization of the entropy generation through the cooling plates. The design of the cooling channels and plates is such that the plate temperature doesn't exceed from a desired temperature and the temperature variation in the plate becomes minimized. In this design, the... 

    Computation of three-dimensional supersonic turbulent flows over wrap-around fin projectiles using personal computers

    , Article Scientia Iranica ; Volume 12, Issue 2 , 2005 , Pages 217-228 ; 10263098 (ISSN) Fazeli, H ; Azimi, A ; Farhanieh, B ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    The three-dimensional supersonic turbulent flows over wrap-around fin missiles have been computed using the Thin Layer Navier-Stokes (TLNS) equations to reduce the computational efforts compared to those of the Full Navier-Stokes (FNS) equations. In this research, the missile configuration is divided into multi regions to enable fluid flow simulation using Personal Computers (PC). It also makes it possible to use a different number of nodes and distribution of grids in each region to enhance the accuracy. The Thin Layer Navier-Stokes equations in the generalized coordinate system were solved using an efficient, implicit, finite-difference factored algorithm of the Beam and Warming. For the... 

    Fluid flow and heat transfer around circular cylinders in the presence and no-presence of porous media

    , Article Journal of Porous Media ; Volume 7, Issue 3 , 2004 , Pages 239-247 ; 1091028X (ISSN) Layeghi, M ; Nouri Borujerdi, A ; Sharif University of Technology
    2004
    Abstract
    Steady-state laminar and incompressible fluid flow and forced-convection heat transfer from a circular cylinder and an array of circular cylinders in the presence and no-presence of porous media are investigated. Various mathematical and numerical models are compared and the effects of porous media on heat transfer enhancement are studied. Navier-Stokes equations are used for the analysis of laminar fluid flow and heat transfer. However, the Darcy and extended Darcy-Brinkman models are used for the analysis of fluid flow and heat transfer in porous media. The cylinders are at constant temperature and the analysis is restricted to the low- and intermediate-Peclet-number regimes (Pr = 1, Re ≤... 

    Study of mixed-convection heat transfer from an impinging jet to a solid wall using a finite-element method - Application to cooktop modeling

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 46, Issue 4 , 2004 , Pages 387-397 ; 10407790 (ISSN) Karzar Jeddi, M ; Kazemzadeh Hannani, S ; Farhanieh, B ; Sharif University of Technology
    2004
    Abstract
    The mixed-convection flow from a hot vertical impinging jet on a colder horizontal disc has been studied. The geometry is analogous to a conventional burning gas cooktop. A numerical simulation of the system has been carried out using the finite-element method to study the dependence of fluid flow and heat transfer on the geometric, thermal, and fluid flow parameters. Results show that heat transfer efficiency versus several parameters such as inlet velocity magnitude and flue gas temperature has an optimum value, in which heat transfer efficiency is maximum. With thermal conductivity of the solid wall, velocity angle, and solid wall diameter heat transfer efficiency has increasing behavior.... 

    Modelling of foam degradation in lost foam casting process

    , Article Journal of Materials Science ; Volume 39, Issue 14 , 2004 , Pages 4593-4603 ; 00222461 (ISSN) Mirbagheri, S. H. M ; Silk, J. R ; Davami, P ; Sharif University of Technology
    2004
    Abstract
    In this investigation a new model was developed to calculate gas pressure at the melt/foam interface (Gap) resulting from foam degradation during mould filling in the lost foam casting (LFC) process. Different aspects of the process, such as foam degradation, gas elimination, transient mass, heat transfer, and permeability of the refractory coating were incorporated into this model. A computational fluid dynamic (CFD) code was developed based on the numerical technique of the Solution Algorithm-Volume of Fluid (SOLA-VOF) utilizing model, for the simulation and prediction of the fluid flow in the LFC process. In order to verify the computational results of the simulation, a thin plate of grey... 

    Modelling the flow behaviour of steel under non-isothermal conditions

    , Article Materials Science and Technology ; Volume 19, Issue 8 , 2003 , Pages 1065-1069 ; 02670836 (ISSN) Serajzadeh, S ; Zebarjad, S. M ; Sharif University of Technology
    2003
    Abstract
    A mathematical model is proposed for evaluating flow behaviour under hot deformation conditions. The effects of dynamic recovery and recrystallisation as well as temperature and strain rate variations are considered in the model by means of Bergstrom's approach and the additivity rule for strain. To verify the model, hot compression tests for three grades of steel together with upsetting experiments are carried out. Comparison between experimental and theoretical results confirms the reliability of the model. © 2003 IoM Communications Ltd. Published by Maney for the Institute of Materials, Minerals and Mining  

    Efficient back analysis of multiphysics processes of gas hydrate production through artificial intelligence

    , Article Fuel ; Volume 323 , 2022 ; 00162361 (ISSN) Zhou, M ; Shadabfar, M ; Huang, H ; Leung, Y. F ; Uchida, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Natural gas hydrate, a crystalline solid existing under high-pressure and low-temperature conditions, has been regarded as a potential alternative energy resource. It is globally widespread and occurs mainly inside the pores of deepwater sediments and sediments under permafrost area. Hydrate production via well depressurization is deemed well-suited to existing technology, in which the pore pressure is lowered, the natural gas hydrate is dissociated into water and gas, and the water and gas are produced from well. This method triggers multiphysics processes such as fluid flow, heat transfer, energy adsorption, chemical reaction and sediment deformation, all of which are dependent on the... 

    Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms

    , Article Ain Shams Engineering Journal ; Volume 13, Issue 5 , 2022 ; 20904479 (ISSN) Ahmad, S ; Akhter, S ; Imran Shahid, M ; Ali, K ; Akhtar, M ; Ashraf, M ; Sharif University of Technology
    Ain Shams University  2022
    Abstract
    An enhancement in heat transfer due to nanofluids is essentially required in various thermal systems. Hybrid nanofluids possess high thermal conductivity and, have ability to embellish and enhance the thermal strength of common fluids. Our concern in this paper is to examine the innovative attributes of hybrid nanofluids like Manganese zinc ferrite (MnZnFe2O4) and Nickel zinc ferrite (NiZnFe2O4) in the bio-convective flow of motile gyrotactic microorganisms subject to Darcy Forchheimer medium. The effect of activation energy has also been taken into account. Mathematical treatment is carried out via MATLAB software. The use of MnZnFe2O4 - NiZnFe2O4/H2O exhibits improved thermal... 

    Impact of temperature and etching methods on surface roughness, topography, and composition of glass micromodels

    , Article Energy and Fuels ; Volume 36, Issue 23 , 2022 , Pages 14066-14078 ; 08870624 (ISSN) Shirazi, M ; Masihi, M ; Mahani, H ; Tamsilian, Y ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Fluid flow in porous media is affected by surface characteristics such as roughness and topography. In this work, to simulate the surface of natural porous structures in transparent interconnected media like micromodels, various degrees of roughness have been artificially created on flat glass substrates via different methods of laser ablation, cream etching, combination of laser ablation and cream etching, and hydrofluoric acid (HF) etching. The obtained surfaces by each method were characterized in detail via field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX/EDS), and surface profilometry. The impact of high... 

    Investigation on reactive flow through porous media by quadtree Lattice Boltzmann

    , Article Journal of Natural Gas Science and Engineering ; Volume 104 , 2022 ; 18755100 (ISSN) Mahmoudi, S ; Ayatollahi, S ; Jamshidi, S ; Raoof, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, in order to investigate the effect of the underlying pore-scale processes on continuum scale simulations of porous media dissolution, we improve the standard Lattice Boltzmann method using Quadtree grid refinement approach to simulate fluid flow and reactive transport through large domain sizes. Our results have shown considerable computational improvements up to 80% in simulation time together with increased numerical accuracy. The results and the added value of the new approach are discussed using comparison of our model with the conventional LBM. Moreover, we have applied a systematic analysis by increasing complexity levels and starting from fluid flow and continuing with... 

    Thermal characteristics of kerosene oil-based hybrid nanofluids (Ag-MnZnFe2O4): A comprehensive study

    , Article Frontiers in Energy Research ; Volume 10 , 2022 ; 2296598X (ISSN) Ahmad, S ; Ali, K ; Haider, T ; Jamshed, W ; Tag El Din, E. S. M ; Hussain, S. M ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Hybrid nanofluids are new and most fascinating types of fluids that involve superior thermal characteristics. These fluids exhibit better heat-transfer performance as equated to conventional fluids. Our concern, in this paper, is to numerically interpret the kerosene oil-based hybrid nanofluids comprising dissimilar nanoparticles like silver (Ag) and manganese zinc ferrite (MnZnFe2O4). A numerical algorithm, which is mainly based on finite difference discretization, is developed to find the numerical solution of the problem. A numerical comparison appraises the efficiency of this algorithm. The effects of physical parameters are examined via the graphical representations in either case of... 

    Multiscale modeling of coupled thermo-hydro-mechanical analysis of heterogeneous porous media

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 391 , 2022 ; 00457825 (ISSN) Saeedmonir, S ; Khoei, A. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This paper presents a numerical multiscale formulation for analysis of the transient heat and fluid flow in deformable heterogeneous porous media. Due to the heterogeneity of the media, the direct numerical simulation of the micro-structures leads to high computational costs. Hence, the multi-scale method can provide an efficient computational procedure. To this end, the first-order computational homogenization is adopted for two-scale simulation of THM problems. The governing equations of the problem contain a stress equilibrium equation, a mass continuity equation and an advection–diffusion equation in a fully coupled manner. Accordingly, the proper virtual power relations are defined as a... 

    CFD simulation of thermal performance of hybrid oil-Cu-Al2O3 nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Samiezadeh, S ; Khodaverdian, R ; Doranehgard, M. H ; Chehrmonavari, H ; Xiong, Q ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, we perform numerical simulations to investigate the thermal and flow characteristics of a parabolic trough solar collector equipped with a porous receiver tube and internal longitudinal fins. The heat transfer medium is a synthetic oil-Cu-Al2O3 hybrid nanofluid. We examine the thermal characteristics of the nanofluid in response to variations in several system parameters. We find that at Reynolds numbers between 5 × 103 and 5 × 105, increasing the volume fraction of Cu nanoparticles can increase the temperature gain at the exit of the receiver tube by 6.4%. Furthermore, the temperature gradient in the cross-section of the collector increases as the direct normal solar... 

    Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs

    , Article Applied Thermal Engineering ; Volume 205 , 2022 ; 13594311 (ISSN) Lori, M.S ; Vafai, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, a detailed numerical analysis of the fluid flow and heat transfer of a three-dimensional microchannel is performed to evaluate the effect of using periodic vertical porous and solid ribs with various geometrical shapes, including rectangular, elliptical, isosceles triangular, backward triangular and forward triangular on the walls of this microchannel. Darcy-Brinkman-Forchheimer equations are used to model transport through the porous medium. The results for microchannels with solid ribs and with porous ribs are compared to each other. It is found that at the lowest studied inlet velocity (uin=0.25m/s), for the rib heights of Hr=0.025mm,0.05mmand0.07mm, the average Nusselt... 

    Simulation of proppant transport at intersection of hydraulic fracture and natural fracture of wellbores using CFD-DEM

    , Article Particuology ; Volume 63 , 2022 , Pages 112-124 ; 16742001 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Proppants transport is an advanced technique to improve the hydraulic fracture phenomenon, in order to promote the versatility of gas/oil reservoirs. A numerical simulation of proppants transport at both hydraulic fracture (HF) and natural fracture (NF) intersection is performed to provide a better understanding of key factors which cause, or contribute to proppants transport in HF–NF intersection. Computational fluid dynamics (CFD) in association with discrete element method (DEM) is used to model the complex interactions between proppant particles, host fluid medium and fractured walls. The effect of non-spherical geometry of particles is considered in this model, using the multi-sphere... 

    Design of two Inertial-based microfluidic devices for cancer cell separation from Blood: A serpentine inertial device and an integrated inertial and magnetophoretic device

    , Article Chemical Engineering Science ; Volume 252 , 2022 ; 00092509 (ISSN) Nasiri, R ; Shamloo, A ; Akbari, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The separation of cancer cells from a heterogeneous biological sample such as blood plays a vital role in cancer study and future treatments. In this paper, we designed and investigated two microfluidic devices for cancer cell separation, including a serpentine inertial device and an integrated inertial-magnetophoretic device. Firstly, numerical modeling was carried out to study the fluid flow, particles’ trajectories in the inertial device. Then the device was fabricated using soft photolithography and suspension of two types of microparticles with the size of 10 and 15 µm were injected into the microchannel separately to investigate the particles’ trajectories and focusing behavior at... 

    Fluid flow and heat transfer in microchannel with and without porous medium under constant heat flux

    , Article Sadhana - Academy Proceedings in Engineering Sciences ; Volume 47, Issue 2 , 2022 ; 02562499 (ISSN) Shamsoddini Lori, M ; Sharif University of Technology
    Springer  2022
    Abstract
    In this study, the heat transfer and fluid flow characteristics of a three-dimensional microchannel that is partially filled with a layer of porous medium at its bottom solid wall is investigated. The microchannel is consisted of a clear fluid flow region, solid walls and a porous layer that is attached to its solid bottom wall. A constant heat flux is applied to the bottom wall of the microchannel. Darcy-Brinkman-Forchheimer model is used to simulate the fluid flow inside the porous medium. The novelty of this work is to investigate thoroughly and precisely the effect of using of porous layer configuration in MCHSs on hydraulic and thermal performances. The effect of porous layer thickness,... 

    Quantifying lake–aquifer water exchange: the case of Lake Urmia, Iran

    , Article Hydrological Sciences Journal ; Volume 67, Issue 5 , 2022 , Pages 725-740 ; 02626667 (ISSN) Parizi, E ; Hosseini, S. M ; Ataie Ashtiani, B ; Nikraftar, Z ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This study investigated the lake–aquifer hydraulic interactions in Lake Urmia (LU) as the second largest hypersaline lake in the world. Due to the scarcity of hydrogeological data required for modelling, a method based on Darcy’s Law and lake water budget was used to quantify the lake–aquifer interaction. Long-term ground- and satellite-based hydrological datasets over the time frame 2001–2019 were used. Results indicate that the groundwater flux between LU and the aquifers controls 18.74 ± 1.67% of the lake’s water storage. While 10 out of 14 adjacent aquifers recharge LU at a rate of less than 180 m3/m.month, one phreatic aquifer recharges the LU up to 1400 m3/m.month. Two aquifers are... 

    Internal cooling sensitivity analysis to improve the thermal performance of gas turbine blade using a developed robust conjugate heat transfer method

    , Article International Journal of Engine Research ; 2022 ; 14680874 (ISSN) Darbandi, M ; Jalali, R ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    The heat transfer simulations of turbine blades with internal cooling are faced with so many uncertainties, of which some originate from the secondary air system, including the inlet hot gas temperature and pressure and the cooling side boundary conditions, and the blade material. The main objective of this work is to carry out a suitable sensitivity analysis on a specific novel turbine vane to improve the thermal performance of its internal cooling system and to quantify how the uncertainties on the designed/calculated values can desirably/undesirably affect the maximum blade surface temperature, which can consequently affect the gas turbine engine efficiency. Furthermore, the sensitivity...