Loading...
Search for: fluid-dynamics
0.016 seconds
Total 748 records

    Dynamics of the nanoneedle probe in trolling mode AFM

    , Article Nanotechnology ; Volume 26, Issue 20 , April , 2015 ; 09574484 (ISSN) Abdi, A ; Pishkenari, H. N ; Keramati, R ; Minary Jolandan, M ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Atomic force microscopy (AFM), as an indispensable tool for nanoscale characterization, presents major drawbacks for operation in a liquid environment arising from the large hydrodynamic drag on the vibrating cantilever. The newly introduced 'Trolling mode' (TR-mode) AFM resolves this complication by using a specialized nanoneedle cantilever that keeps the cantilever outside of the liquid. Herein, a mechanical model with a lumped mass was developed to capture the dynamics of such a cantilever with a nanoneedle tip. This new developed model was applied to investigate the effects of the needle-liquid interface on the performance of the AFM, including the imaging capability in liquid  

    Iran atlas of offshore renewable energies

    , Article Renewable Energy ; Volume 36, Issue 1 , January , 2011 , Pages 388-398 ; 09601481 (ISSN) Abbaspour, M ; Rahimi, R ; Sharif University of Technology
    2011
    Abstract
    The aim of the present study is to provide an Atlas of IRAN Offshore Renewable Energy Resources (hereafter called 'the Atlas') to map out wave and tidal resources at a national scale, extending over the area of the Persian Gulf and Sea of Oman. Such an Atlas can provide necessary tools to identify the areas with greatest resource potential and within reach of present technology development. To estimate available tidal energy resources at the site, a two-dimensional tidally driven hydrodynamic numerical model of Persian Gulf was developed using the hydrodynamic model in the MIKE 21 Flow Model (MIKE 21HD), with validation using tidal elevation measurements and tidal stream diamonds from... 

    Comparative numerical analysis of the flow pattern and performance of a foil in flapping and undulating oscillations

    , Article Journal of Marine Science and Technology (Japan) ; Volume 20, Issue 2 , June , 2015 , Pages 257-277 ; 09484280 (ISSN) Abbaspour, M ; Ebrahimi, M ; Sharif University of Technology
    Springer-Verlag Tokyo  2015
    Abstract
    Nature presents a variety of propulsion, maneuvering, and stabilization mechanisms which can be inspired to design and construction of manmade vehicles and the devices involved in them, such as stabilizers or control surfaces. This study aims to elucidate and compare the propulsive vortical signature and performance of a foil in two important natural mechanisms: flapping and undulation. Navier–Stokes equations are solved in an ALE framework domain containing a 2D NACA 0012 foil moving with prescribed kinematics. All simulations are carried out using a pressure-based finite volume method solver. The results of time-averaged inline force versus Strouhal number (St) show that in a given... 

    Unsteady flow over offshore wind turbine airfoils and aerodynamic loads with computational fluid dynamic simulations

    , Article International Journal of Environmental Science and Technology ; Volume 13, Issue 6 , 2016 , Pages 1525-1540 ; 17351472 (ISSN) Abbaspour, M ; Radmanesh, A. R ; Soltani, M. R ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies 
    Abstract
    The first notable megawatt class wind turbine, which was the pioneer of improvement in the blade performance in large wind turbines, appeared in Vermont. Nowadays, modern wind turbines are using blades with multi-airfoils at different sections. In this study, in order to indicate the best airfoil profile for the optimum performance in different sections of a blade, five popular airfoils, including S8xx, FFA and AH series, were studied. On the large-scale profile, shear stress transport K–ω model was applied for the simulation of horizontal axis wind turbines for different wind speeds. The aerodynamic simulation was accomplished using computational fluid dynamic method, which in turn is based... 

    Developing three dimensional potential solver for investigation of propulsion performance of rigid and flexible oscillating foils

    , Article Ocean Engineering ; Volume 147 , 2018 , Pages 121-131 ; 00298018 (ISSN) Abbaspour, M ; Najafi, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Heave and pitch motion of an oscillating airfoil in uniform flow will cause generation of forwarding thrust. Applying a combination of these two motions on flexible foil, one can increase thrust and therefore the efficiency. This is the way that most fishes and other flying animals uses to consume less energy. In this paper, hydrodynamic forces and efficiency of an oscillating airfoil is investigated. A code is developed based on potential flow formulation in combination with Time Stepping Method (TSM) with nonlinear free shear layer dynamic approach to predict the wake behind the lifting bodies. A linear Morino type Kutta condition has been implemented on panels adjacent to trailing edge.... 

    Innovative approach to design a new national low speed wind tunnel

    , Article International Journal of Environmental Science and Technology ; Volume 6, Issue 1 , 2009 , Pages 23-34 ; 17351472 (ISSN) Abbaspour, M ; Shojaee, M. N ; Sharif University of Technology
    2009
    Abstract
    A new multipurpose wind tunnel with adjustable test section designed in the science and research branch of Islamic Azad University site could be used either as the environmental, subsonic or climatic wind tunnels. For this purpose, a new design approach was adopted in which through the adjustment of the wind tunnel cycle, i.e. the nozzle of test section,it could be utilized as any of the three wind tunnels. A design used for environmental wind tunnels and other contraction which was adjusted by 50 % through changes in the polynomial contraction for other applications. As a result, the best fitted profile for the environmental wind tunnels contraction was selected by contraction best fit... 

    Details study on the kinematic characteristics of manta ray section in flapping motion and exploring its application in wave glider propulsion system

    , Article Sustainable Energy Technologies and Assessments ; Volume 53 , 2022 ; 22131388 (ISSN) Abbaspour, M ; Safari, H ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    It has always been a human challenge to inspire natural configurations and phenomena and benefit from their merits in improving the performances of man-made proposed aero/hydro vehicles. For example, the manta rays are known for their great swimming performances. To design and fabricate an underwater robot based on the manta ray geometry and its kinematic characteristics, it is important to initially study its hydrodynamic behavior and possibly arrive at some key design parameters, which can remarkably help to figure out an optimum geometry with high swimming performances. The main objective of this study is to focus on the merits of gliding motion inspired by the manta ray fish considering... 

    Numerical analysis of wake structure and performance of two oscillatory mechanisms of a foil: Pure pitching and undulating

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 229, Issue 4 , April , 2015 , Pages 376-396 ; 14750902 (ISSN) Abbaspoor, M ; Ebrahimi, M ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    There are various propulsion, maneuvering, and stabilization mechanisms in nature, which can provide inspiration for similar mechanisms in man-made vehicles. This study aims to elucidate and compare the propulsive vortical signature and performance of a foil in two important natural mechanisms of pure pitching and undulatory oscillations. Governing equations are solved with a pressure-based finite volume method solver, in an arbitrary Lagrangian-Eulerian framework domain containing a NACA 0012 foil moving with prescribed kinematics. The results show that in a given Reynolds number (Re), the undulating mechanism produces thrust at a higher Strouhal number (St) and with smaller growth slope,...