Loading...
Search for: fluid-dynamics
0.018 seconds
Total 748 records

    Proposing a general formula to calculate the critical velocities in tunnels with different cross-sectional shapes

    , Article Tunnelling and Underground Space Technology ; Volume 110 , 2021 ; 08867798 (ISSN) Savalanpour, H ; Farhanieh, B ; Afshin, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Among the parameters affecting the critical velocity in tunnel fires, the tunnel cross-sectional shape could significantly affect the tunnel fire characteristics, mainly due to the wall-bounded physics of the tunnel fire. Previously, the effects of the cross-sectional geometry of the tunnel were calculated using the non-dimensional analysis and hydraulic height of the tunnel. The dimensionless analysis using hydraulic height calculates only the effects of the tunnel sizes and does not capture the effects of the shape of the tunnel cross-section. Developing a 3D computational fluid dynamics tool using the body-fitted grids, the critical velocities are calculated for the 7 different... 

    Optimization of separator internals design using CFD modeling in the Joule-Thomson process

    , Article Journal of Natural Gas Science and Engineering ; Volume 89 , 2021 ; 18755100 (ISSN) Nabati Shoghl, S ; Naderifar, A ; Farhadi, F ; Pazuki, G ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, gas dehydration and natural gas liquid (NGL) recovery by the Joule-Thomson (JT) process, were investigated using the computational fluid dynamics (CFD) modeling approach. Droplet behavior inside the separator was analyzed by particle tracing and moisture diffusion methods. The modified separator reduced the water content of natural gas from 0.008 to 0.0029 kg/m3. In addition, the separation efficiency was increased by addition of internal components. One of the added internal components was an inlet deflector. Among different inlet deflectors, the reversed type one exhibited the highest separation efficiency. The separation efficiency improved from 6 to 10% in the original... 

    Effect of sinusoidal splitter on mixing performance of co-flow jets of hydrogen and air inside dual-combustor ramjet

    , Article Acta Astronautica ; Volume 180 , 2021 , Pages 211-217 ; 00945765 (ISSN) Sun, C ; Sharifi Rayeni, N ; Moghimihanjani, M ; Moradi, R ; Li, Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, the existence of a sinusoidal splitter on the formation and distribution of hydrogen and air co-jets are investigated in a dual-combustion ramjet engine. The main scope of this research is to analyze the comprehensive flow structure and flame features directly downstream of the sinusoidal splitter. In this work, shockwave/shear-layer interactions behind the sinusoidal splitter are thoroughly studied through a computational fluid dynamic approach. Two different splitter profiles are compared with a simple splitter to demonstrate the main effects of multi shock wave interactions on fuel distribution and penetrations. To simulate co-air jet, Reynolds Average Navier-Stocks... 

    Computational study of geometric effects of bottom wall microgrooves on cell docking inside microfluidic devices

    , Article Journal of Mechanics in Medicine and Biology ; Volume 21, Issue 2 , 2021 ; 02195194 (ISSN) Ahandoust, S ; Saadatmand, M ; Sharif University of Technology
    World Scientific  2021
    Abstract
    Cells docking inside microfluidic devices is effective in studying cell biology, cell-based biosensing, as well as drug screening. Furthermore, single cell and regularly cells docking inside the microstructure of microfluidic systems are advantageous in different analyses of single cells exposed to equal drug concentration and mechanical stimulus. In this study, we investigated bottom wall microgrooves with semicircular and rectangular geometries with different sizes which are suitable for single cell docking along the length of the microgroove in x-direction and numerous cells docking regularly in one line inside the microgroove in a 3D microchannel. We used computational fluid dynamics to... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: Pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial... 

    Computational study of geometric effects of bottom wall microgrooves on cell docking inside microfluidic devices

    , Article Journal of Mechanics in Medicine and Biology ; Volume 21, Issue 2 , 2021 ; 02195194 (ISSN) Ahandoust, S ; Saadatmand, M ; Sharif University of Technology
    World Scientific  2021
    Abstract
    Cells docking inside microfluidic devices is effective in studying cell biology, cell-based biosensing, as well as drug screening. Furthermore, single cell and regularly cells docking inside the microstructure of microfluidic systems are advantageous in different analyses of single cells exposed to equal drug concentration and mechanical stimulus. In this study, we investigated bottom wall microgrooves with semicircular and rectangular geometries with different sizes which are suitable for single cell docking along the length of the microgroove in x-direction and numerous cells docking regularly in one line inside the microgroove in a 3D microchannel. We used computational fluid dynamics to... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial... 

    Optimization of microgrooves for water–solid drag reduction using genetic algorithm

    , Article Journal of Ocean Engineering and Marine Energy ; Volume 6, Issue 3 , 2020 , Pages 221-242 Abdollahzadeh, M. J ; Moosavi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    The friction on the water–solid interfaces continues to be the most important factor for the energy loss in many marine and submarine applications. Therefore, different techniques have been developed and are available to reduce friction and, as a result, the overall cost. In the past decades, the use of structured surfaces has been given considerable attention because of their specific characteristics such as their abilities in pressure drop reduction. However, an appropriate optimization method is required to find the best surface structure. In the present study, we consider a microgrooved substrate and examine the performance of three shapes including rectangular, elliptical, and... 

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: Direct numerical simulation

    , Article Journal of Molecular Liquids ; 2020 Alizadeh, M. R ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Thermal enhancement of baseboard heaters using novel fin-tube arrays: Experiment and simulation

    , Article International Journal of Thermal Sciences ; Volume 151 , 2020 Bagheri, N ; Moosavi, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier Masson SAS  2020
    Abstract
    Baseboard heaters are a type of building heating systems that are placed along the base of the interior wall, instead of the traditional skirting. Baseboard heaters meet all the requirements of modern buildings such as thermal comfort, well-architected appearance, space-saving, efficient energy consumption, and fast thermal response. In the present study, we investigate the enhancement of the thermal output of hydronic baseboard heaters. For this purpose, several novel fin-tube arrays such as convector fins and fin-clips are proposed and the thermal performance of each array is evaluated experimentally. In addition, two different types of materials for the tubes, namely, copper and aluminum... 

    A rigorous algebraic-analytical method for pore network extraction from micro-tomography images

    , Article Journal of Hydrology ; Volume 590 , 2020 Barzegar, F ; Masihi, M ; Azadi Tabar, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Static and dynamic properties of porous media are highly dependent on its internal geometry. CT scan images are generally used to characterize porous media geometry. Direct simulation of fluid flow on CT scan images is possible but considerably time-consuming. In this study, a new method was developed for extracting a simplified representation known as “pore network model” by utilizing a rigorous algebraic-analytical method. By using a moving frame in the 3D matrix of the CT scan image and stepwise identifying-removing of image components, running time for a 4003 voxels sample in a typical computer system decreased to less than 350 s. The identification of throats was based on a new... 

    Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models

    , Article Computer Methods and Programs in Biomedicine ; Volume 185 , 2020 Biglarian, M ; Momeni Larimi, M ; Hassanzadeh Afrouzi, H ; Moshfegh, A ; Toghraie, D ; Javadzadegan, A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and Objective: Blood flow variation during cardiac cycle is the main mechanism of atherosclerotic development which is dependent on. Methods: The present work mainly tends to investigate stenosis effect in dynamic curvature of coronary artery. This paper presents numerical investigations on wall shear stress profiles in three-dimensional pulsatile flow through curved stenotic coronary arteries for both static and dynamic model. In order to do so, three-dimensional models related to the curved arteries with two degrees of stenosis (30% and 50%). Results: Lower amount of wall shear stress is found near the inner wall of artery distal to the plaque region (stenosis) and in both... 

    Modeling and experimental validation of material flow during FSW of polycarbonate

    , Article Materials Today Communications ; Volume 22 , 2020 Derazkola, H. A ; Eyvazian, A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Friction stir welding (FSW) of thermoplastic materials is an attractive but a challenging process due to inherent chemical and mechanical characteristics of polymeric materials. In the present work, thermo-mechanical models were employed to investigate the effect of processing parameters on of FSW of polycarbonate (PC). The heat flux during the joining process was localized around the PC join line and led to the formation of circular rings on the upper surface. According to the simulation results, increasing the tool rotational velocity reduced the temperature gradient and decfeased the suseptibelity of crack formation around the joint line. Cracks were formed at low frictional heats and... 

    A tool for designing tree-like concentration gradient generators for lab-on-a-chip applications

    , Article Chemical Engineering Science ; Volume 212 , 2020 Ebadi, M ; Moshksayan, K ; Kashaninejad, N ; Saidi, M. S ; Nguyen, N. T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Concentration gradient generators (CGGs) help biologists to perform large scale, fast and high-throughput experiments. This paper introduces a design tool called Tree-like Concentration gradient generator Design Tool (TCDT). The performance of this tool is validated both numerically and experimentally. Three CGGs were fabricated using three different fabrication methods and design parameters. The performance of these devices was examined using the measurement of fluorescent and dye intensity. The performance of the design tool for non-linear and multi-drug concentration gradient generations was investigated as well. In addition, a method was developed to investigate the multi-drug... 

    Non-Newtonian fluid flow dynamics in rotating annular media: Physics-based and data-driven modeling

    , Article Journal of Petroleum Science and Engineering ; Volume 185 , 2020 Ershadnia, R ; Amooie, M. A ; Shams, R ; Hajirezaie, S ; Liu, Y ; Jamshidi, S ; Soltanian, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A thorough understanding and accurate prediction of non-Newtonian fluid flow dynamics in rotating annular media are of paramount importance to numerous engineering applications. This is in particular relevant to oil and gas industry where this type of flow could occur during, e.g., drilling, well completion, and enhanced oil recovery scenarios. Here, mathematically we report on physical-based (numerical) and data-driven (intelligent) modeling of three-dimensional laminar flow of non-Newtonian fluids driven by axial pressure gradient in annular media that consist of a coaxially rotating inner cylinder. We focus on the dynamics of pressure loss ratio (PLR)—the ratio of total pressure loss in... 

    Investigation of the continuum-rarefied flow and isotope separation using a hybrid CFD-DSMC simulation for UF6 in a gas centrifuge

    , Article Annals of Nuclear Energy ; 2020 Ghazanfari, V ; Akbar Salehi, A ; Reza Keshtkar, A ; Mahdi Shadman, M ; Hossein Askari, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    UF6 gas flow in the total regions of a rotor with the radius of 0.1 m and the length of 1 m in axisymmetric and steady states was simulated using a new hybrid CFD-DSMC method in the OpenFOAM framework. Implicit coupled density-based scheme was performed for CFD method, and Variable Hard Sphere (VHS) and diffuse model were employed in DSMC method. Also, as an initial estimation, the local Knudsen number was applied to determine the interface location between the continuum-rarefied regions (r = 0.0855 m). Then it was modified (r = 0.084 m) to reduce the computational cost. The comparison results of pure CFD and CFD-DSMC methods illustrated that there were large differences between the flow...