Loading...
Search for: fluid-mechanics
0.008 seconds

    Exchange flow between a canopy and open water

    , Article Journal of Fluid Mechanics ; Volume 611 , 25 September , 2008 , Pages 237-254 ; 00221120 (ISSN) Jamali, M ; Zhang, X ; Nepf, H. M ; Sharif University of Technology
    2008
    Abstract
    This paper theoretically and experimentally investigates the exchange flow due to temperature differences between open water and a canopy of aquatic plants. A numerical model is used to study the interfacial shape, frontal velocity and total volumetric exchange, and their dependence on a dimensionless vegetation drag parameter. The numerical predictions are consistent with the laboratory measurements. There is a short initial period in which the force balance is between buoyancy and inertia, followed by drag-dominated flow for which there is a balance between buoyancy and drag forces. After the initial stage, the gravity current propagating into the canopy takes a triangular shape whereas... 

    Modified incompressible SPH method for simulating free surface problems

    , Article Fluid Dynamics Research ; Volume 40, Issue 9 , 2008 , Pages 637-661 ; 01695983 (ISSN) Ataie Ashtiani, B ; Shobeyri, G ; Farhadi, L ; Sharif University of Technology
    2008
    Abstract
    An incompressible smoothed particle hydrodynamics (I-SPH) formulation is presented to simulate free surface incompressible fluid problems. The governing equations are mass and momentum conservation that are solved in a Lagrangian form using a two-step fractional method. In the first step, velocity field is computed without enforcing incompressibility. In the second step, a Poisson equation of pressure is used to satisfy incompressibility condition. The source term in the Poisson equation for the pressure is approximated, based on the SPH continuity equation, by an interpolation summation involving the relative velocities between a reference particle and its neighboring particles. A new form... 

    An experimental investigation of the reduced frequency effects into pressure coefficients of a plunging airfoil

    , Article 7th International Conference on Advances in Fluid Mechanics, AFM'08, The New Forest, 21 May 2008 through 23 May 2008 ; Volume 59 , 2008 , Pages 153-161 ; 17433533 (ISSN); 9781845641092 (ISBN) Mani, M ; Ajalli, F ; Soltani, M. R ; WIT Transactions on Engineering Sciences ; Sharif University of Technology
    2008
    Abstract
    Aerodynamic coefficients on a two dimensional plunging airfoil, in a low-speed wind tunnel are presented. Dynamic motion was produced by plunging the model over a range of reduced frequencies, and mean angles of attack. The Reynolds number in the present test was held fixed (Re = 1.5×10 5), and the reduced frequency was varied in an almost wide range. Surface static pressure distribution was measured on the upper and lower sides of the model, during the oscillating motion. It was found that reduced frequency had strong effects on the pressure distribution, near the leading edge of the airfoil. For mean equivalent angles of attack of 0, 5 degrees, hysteresis loops on the upper surface of the... 

    Characterization of fracture dynamic parameters to simulate naturally fractured reservoirs

    , Article International Petroleum Technology Conference, IPTC 2008, Kuala Lumpur, 3 December 2008 through 5 December 2008 ; Volume 1 , 2008 , Pages 473-485 ; 9781605609546 (ISBN) Bahrami, H ; Siavoshi, J ; Parvizi, H ; Esmaili, S ; Karimi, M. H ; Nasiri, A ; Sharif University of Technology
    2008
    Abstract
    Fractures identification is essential during exploration, drilling and well completion of naturally fractured reservoirs since they have a significant impact on flow contribution. There are different methods to characterize these systems based on formation properties and fluid flow behaviour such as logging and testing. Pressure-transient testing has long been recognized as a reservoir characterization tool. Although welltest analysis is a recommended technique for fracture evaluation, but its use is still not well understood. Analysis of pressure transient data provides dynamic reservoir properties such as average permeability, fracture storativity and fracture conductivity.An infusion of... 

    New approach in the prediction of RDC liquid-liquid extraction column parameters

    , Article Chemical Engineering and Technology ; Volume 31, Issue 7 , 2008 , Pages 971-977 ; 09307516 (ISSN) Bastani, D ; Shahalami, S. M ; Sharif University of Technology
    2008
    Abstract
    The liquid-liquid extraction process is well-known for its complexity and often entails intensive modeling and computational efforts to simulate its dynamic behavior. This paper presents a new application of the Genetic Algorithm (GA) to predict the modeling parameters of a chemical pilot plant involving a rotating disc liquid-liquid extraction contactor (RDC). In this process, the droplet behavior of the dispersed phase has a strong influence on the mass transfer performance of the column. The mass transfer mechanism inside the drops of the dispersed phase was modeled by the Handlos-Baron circulating drop model with consideration of the effect of forward mixing. Using the Genetic Algorithm... 

    Two-dimensional model of melt flows and interface instability in aluminum reduction cells

    , Article Light Metals 2008, New Orleans, LA, 9 March 2008 through 13 March 2008 ; 2008 , Pages 443-448 ; 01470809 (ISSN); 9780873397100 (ISBN) Kadkhodabeigi, M ; Sharif University of Technology
    2008
    Abstract
    We derive a new non-linear two dimensional model for melt flows and interface instability in aluminum reduction cells. This model is based on non-linear de St. Venant shallow water equations and contains the main features of an aluminum reduction cell. In this model we consider linear friction terms but in a new way that has not been considered in previous works. Our results are in good agreement with the results of simulation of viscous flow. This model is applicable both in determination of melt flows in molten aluminum and cryolite layers and also in finding the extreme limit for stability of interfacial waves in an aluminum reduction cell  

    Dynamic anlysis of an amphibious single wheel robot part1: Moving in straight path

    , Article 31st Mechanisms and Robotics Conference, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007, Las Vegas, NV, 4 September 2007 through 7 September 2007 ; Volume 8 PART B , 2008 , Pages 927-932 ; 0791848027 (ISBN); 9780791848029 (ISBN); 0791848094 (ISBN); 9780791848098 (ISBN) Marzban, M ; Alasty, A ; Sharif University of Technology
    2008
    Abstract
    A single wheel, gyroscopically stabilized robot is a sharpedged wheel actuated by a spinning flywheel for steering and a drive motor for propulsion. The spinning flywheel acts as a gyroscope to stabilize the robot and it can be tilted to achieve steering. In this paper first the kinematics of a single wheel robot, like Gyrover, in water is considered and then a simple mechanism for its movement in water is proposed. After hydrodynamic analysis of the robot a complete dynamics model is designed with Lagrange energy method. The only simplification used here is neglecting the added mass effect in hydrodynamic analysis. This complete model can be used for examining the behavior of the robot in... 

    Development of an equation to predict radial modulus of elasticity for single-walled carbon nanotubes

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 222, Issue 6 , 2008 , Pages 1109-1115 ; 09544062 (ISSN) Sakhaee Pour, A ; Ahmadian, M. T ; Gerami, A ; Sharif University of Technology
    2008
    Abstract
    Finite element (FE) method is used to model radial deformation of single-walled carbon nanotube (SWCNT) under hydrostatic pressure. Elastic deformation of the nanostructure is simulated via elastic beams. Properties of the beam element are calculated by considering the stiffness of the covalent bonds between the carbon atoms in the hexagonal lattice. By applying the beam elements in a three-dimensional space, elastic properties of the SWCNT in transverse direction are obtained. In this regard, influences of diameter and tube wall thickness on the radial and circumferential elastic moduli of zigzag and armchair SWCNTs are considered. It is observed that there is a good agreement between the... 

    Stabilized Meshless Local Petrov-Galerkin (MLPG) method for incompressible viscous fluid flows

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 29, Issue 2 , 2008 , Pages 75-94 ; 15261492 (ISSN) Haji Mohammadi, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, the truly Meshless Local Petrov-Galerkin (MLPG) method is extended for computation of steady incompressible flows, governed by the Navier-Stokes equations (NSE), in vorticity-stream function formulation. The present method is a truly meshless method based on only a number of randomly located nodes. The formulation is based on two equations including stream function Poisson equation and vorticity advection-dispersion-reaction equation (ADRE). The meshless method is based on a local weighted residual method with the Heaviside step function and quartic spline as the test functions respectively over a local subdomain. Radial basis functions (RBF) interpolation is employed in shape... 

    Using vorticity as an indicator for the generation of optimal coarse grid distribution

    , Article Transport in Porous Media ; Volume 75, Issue 2 , 2008 , Pages 167-201 ; 01693913 (ISSN) Ashjari, M. A ; Firoozabadi, B ; Mahani, H ; Sharif University of Technology
    2008
    Abstract
    An improved vorticity-based gridding technique is presented and applied to create optimal non-uniform Cartesian coarse grid for numerical simulation of two-phase flow. The optimal coarse grid distribution (OCGD) is obtained in a manner to capture variations in both permeability and fluid velocity of the fine grid using a single physical quantity called "vorticity". Only single-phase flow simulation on the fine grid is required to extract the vorticity. Based on the fine-scale vorticity information, several coarse grid models are generated for a given fine grid model. Then the vorticity map preservation error is used to predict how well each coarse grid model reproduces the fine-scale... 

    Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics

    , Article Transport in Porous Media ; Volume 74, Issue 3 , 2008 , Pages 331-346 ; 01693913 (ISSN) Vakilha, M ; Manzari, M. T ; Sharif University of Technology
    2008
    Abstract
    The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy's law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can... 

    MODSharp: Regional-scale numerical model for quantifying groundwater flux and contaminant discharge into the coastal zone

    , Article Environmental Modelling and Software ; Volume 22, Issue 9 , 2007 , Pages 1307-1315 ; 13648152 (ISSN) Ataie Ashtiani, B ; Sharif University of Technology
    2007
    Abstract
    In this paper the development of a quasi-three-dimensional numerical model that can be used for quantifying groundwater inputs and associated contaminant discharged from coastal aquifers into the coastal zone at a regional scale is presented. The present model is called MODSharp. In order to handle problems at a regional scale, the sharp interface approach which is used for conceptualising seawater intrusion, is applied to this model. This model can be used for the simulation of groundwater flow and contaminant transport in layered coastal aquifers at a regional scale. The method of characteristics is used to solve the advection-dispersion equation, which governs contaminant transport in... 

    Calculation of thermodynamic properties of simple fluids using a new derived pair correlation function

    , Article Fluid Phase Equilibria ; Volume 254, Issue 1-2 , 2007 , Pages 138-143 ; 03783812 (ISSN) Khanpour, M ; Parsafar, G. A ; Najafi, B ; Sharif University of Technology
    2007
    Abstract
    Based on a new derived radial distribution function (RDF) for potentials with a hard-core we have presented in this paper a method to apply the derived RDF for calculating thermodynamic properties of real fluids up to moderate densities. In order to use the derived RDF for real fluids, one of the potential parameters is chosen in such a way that the RDF behaves more like that for a real fluid. Hence we have been able to calculate all thermodynamic properties of a simple fluid analytically. We have then applied our procedure to a Lennard-Jones fluid and compared the results with simulation data. The agreement is good up to moderate densities, i.e. ρ* ≤ 0.6, which lies in the liquid range of... 

    Studies of the rate of water evaporation through adsorption layers using drop shape analysis tensiometry

    , Article Journal of Colloid and Interface Science ; Volume 308, Issue 1 , 2007 , Pages 249-253 ; 00219797 (ISSN) Fainerman, V. B ; Makievski, A. V ; Krägel, J ; Javadi, A ; Miller, R ; Sharif University of Technology
    2007
    Abstract
    With modified measuring procedure and measuring cell design in the drop profile tensiometer PAT, it became possible to study the rate of water evaporation through adsorbed or spread surface layers. This method was employed to measure the rate of water evaporation from drops covered by adsorbed layers of some proteins and surfactants, in particular n-dodecanol. It was shown that the formation of dense (double or condensed) adsorbed layers of protein and the formation of 2D-condensed n-dodecanol layer decrease the water evaporation rate by 20-25% as compared with pure water. At the same time, the adsorbed layers of ordinary surfactants (sodium dodecyl sulfate and nonionic ethoxylated... 

    Oblique weir equation using incomplete self-similarity

    , Article Canadian Journal of Civil Engineering ; Volume 33, Issue 10 , 2006 , Pages 1241-1250 ; 03151468 (ISSN) Borghei, S. M ; Kabiri Samani, A. R ; Nekoee, N ; Sharif University of Technology
    2006
    Abstract
    Incomplete self-similarity (ISS) concept is employed to develop the equations from existing experimental results of flow over an oblique rectangular sharp-crested weir for both free and submerged flow. The stage-discharge relationship is obtained by theoretical analysis, based on the application of the dimensional analysis and the ISS theory. For analysis, the relations were found by trial and error procedure using the SPSS mathematical computer program that estimates the relation among multi-variable functions. Thus, equations to estimate the flow characteristics for both free and submerged flow are proposed. The results show a better compatibility with the experimental data than the... 

    Comparison of interface capturing methods in two phase flow

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 29, Issue 6 , 2005 , Pages 539-548 ; 03601307 (ISSN) Panahi, R ; Jahanbakhsh, E ; Seif, M. S ; Sharif University of Technology
    2005
    Abstract
    In two phase flow investigation, there is a need for robust methods capable of predicting interfaces, in addition to treating the traditional governing equations of fluid mechanics (Navier-Stokes Eqs.). Such methods in a finite volume approach can be classified into two typical categories called interface tracking and interface capturing methods. According to their abilities, interface capturing methods are of more interest in free surface modeling, especially when complex interface topologies such as wave breaking are included. These methods solve a scalar transport equation in order to find the distribution of two phases all over the computational domain. That is, all properties of the... 

    Conservation of statistical results under the reduction of pair-contact interactions to solvation interactions

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 72, Issue 6 , 2005 ; 15393755 (ISSN) Radja, N.H ; Farzami, R. R ; Ejtehadi, M. R ; Sharif University of Technology
    2005
    Abstract
    We show that the hydrophobicity of sequences is the leading term in Miyazawa-Jernigan interactions. Being the source of additive (solvation) terms in pair-contact interactions, they were used to reduce the energy parameters while resulting in a clear vector manipulation of energy. The reduced (additive) potential performs considerably successful in predicting the statistical properties of arbitrary structures. The evaluated designabilities of the structures by both models are highly correlated. Suggesting geometrically nondegenerate vectors (structures) as proteinlike structures, the additive model is a powerful tool for protein design. Moreover, a crossing point in the log-linear diagram of... 

    Elucidation of charge recombination and accumulation mechanism in mixed perovskite solar cells

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 27 , 2018 , Pages 15149-15154 ; 19327447 (ISSN) Yadav, P ; Turren Cruz, S. H ; Prochowicz, D ; Tavakoli, M. M ; Pandey, K ; Zakeeruddin, S. M ; Gratzel, M ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Organic-inorganic perovskite solar cells (PSCs) have gained considerable attention owing to their impressive photovoltaic properties and simple device manufacturing. In general, PSC employs a perovskite absorber material sandwiched between an electron and hole selective transport layer optimized with respect to optimal band alignment, efficient charge collection, and low interfacial recombination. The interfaces between the perovskite absorber and respective selective contacts play a crucial role in determining photovoltaic performance and stability of PSCs. However, a fundamental understanding is lacking, and there is poor understanding in controlling the physical processes at the... 

    Simulation of incompressible multiphase flows using the artificial compressibility method

    , Article ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018, 15 July 2018 through 20 July 2018 ; Volume 2 , 2018 ; 08888116 (ISSN); 9780791851562 (ISBN) Mortezazadeh, M ; Hejranfar, K ; Fluids Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    The Eulerian methods are susceptible to generate the nonphysical spurious currents in the multiphase flow simulations near the interfaces. This paper presents a new Eulerian method to accurately simulate the velocity fields, especially near the multiphase flow interfaces and prevents the numerical results from generating the nonphysical currents. A Eulerian central difference finite-volume scheme equipped with the suitable numerical dissipation terms is used to simulate incompressible multiphase flows. The interface is captured by Flux Corrected Transport-Volume of Fluid method (FCT-VOF). Increasing the accuracy near the sharp gradients, such as interface, the conservative form of... 

    Evaluating the ability of slw model in numerical simulation of radiative turbulent reacting flow in industrial application

    , Article ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018, 15 July 2018 through 20 July 2018 ; Volume 2 , 2018 ; 08888116 (ISSN); 9780791851562 (ISBN) Darbandi, M ; Barezban, M. B ; Schneider, G. E ; Fluids Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    In this paper, the turbulent reacting flow in an industrial furnace is numerically simulated using the RANS equations. The two-equation standard k-ε and the eddy dissipation models are used respectively to close the turbulent closure problem and to consider the turbulence-chemistry interaction. The radiation transfer equation is solved using the discrete ordinates method (DOM). To calculate the radiation absorption coefficient in participating combustion gases, we use the spectral line-based weighted sum of grey gases (SLW) model and compare the achieved results with famous gray-based model, i.e., the weighted-sum-of-gray-gases (WSGG) model. The results of this research show that using the...