Loading...
Search for: fluid-mechanics
0.009 seconds

    Multi-criteria decision making for integrated urban water management

    , Article Water Resources Management ; Volume 22, Issue 8 , 2008 , Pages 1017-1029 ; 09204741 (ISSN) Zarghami, M ; Abrishamchi, A ; Ardakanian, R ; Sharif University of Technology
    2008
    Abstract
    The city of Zahedan, in South-eastern Iran, has high population growth, limited local freshwater resources and inadequate water distribution system resulting in water supply failures in recent years. This paper will investigate integration of several demand management measures such as leakage detection on water distribution network, water metering and low volume water fixtures as well as the conjunctive use of surface and groundwater resources of this city. For integration of water management criteria, compromise programming will be used as a multi-objective decision making method. The criteria include minimizing the cost, maximizing water supply and minimizing the social hazards due to the... 

    Experimental study and modeling of gravity drainage during WAG process in fractured carbonate rocks

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 27, Issue 3 , October , 2008 , Pages 103-113 ; 10219986 (ISSN) Jafari, M ; Badakhshan, A ; Taghikhani, V ; Rashtchian, D ; Gotbi, C ; Sajadian, V. A ; Sharif University of Technology
    2008
    Abstract
    The experimental study and modeling of gravity drainage during Water Alternative Gas Injection, WAG process, in carbonate rock for one of the Iranian off-shore reservoir at lab-scale were carried out. The mechanism of gravity drainage during the WAG process, and its contribution to the oil recovery in the fractured carbonate reservoirs were also studied. In the WAG process alternatively gas is injected during the process and gravity drainage could be happened. Changes in the block dimensions, rock properties, oil properties, gas properties, and fractures properties and their effect on the amount of oil recovered during the gravity drainage mechanism were studied. It would be worth mentioning... 

    Analysis of microchannel heat sink performance using nanofluids in turbulent and laminar flow regimes and its simulation using artificial neural network

    , Article 10th International Conference on Computer Modelling and Simulation, EUROSIM/UKSim2008, Cambridge, 1 April 2008 through 3 April 2008 ; 2008 , Pages 623-628 ; 0769531148 (ISBN); 9780769531144 (ISBN) Shokouhmand, H ; Ghazvini, M ; Shabanian, J ; Sharif University of Technology
    2008
    Abstract
    In this study, silicon microchannel heat sink (MCHS) performance using nanofluids as coolants was analyzed. The nanofluid was a mixture of nanoscale Cu particles and pure water with various volume fractions. Based on theoretical models and experimental correlations, the heat transfer and friction coefficients required in the analysis were used. In the theoretical model, nanofluid was treated as a single-phase fluid. In the experimental correlation, thermal dispersion due to particle random motion was included. The microchannel heat sink performances for a specific geometries with Wch = W fin = 100 μm and Lch =300 μm is examined. In this study, flow in laminar and turbulent regimes using the... 

    Developing consistent inlet thermal boundary condition in micro/nano scale channels with heat transfer

    , Article 1st ASME Micro/Nanoscale Heat Transfer International Conference, MNHT08, Tainan, 6 January 2008 through 9 January 2008 ; Volume Parts A and B , 2008 , Pages 691-700 ; 0791842924 (ISBN); 9780791842928 (ISBN) Darbandi, M ; Vakilipour, S ; Sharif University of Technology
    2008
    Abstract
    In this work, we present a more realistic inlet boundary condition to simulate compressible and incompressible flows through micro and nano channels considering consistent momentum and heat transfer specifications there. At solid walls, a constant wall temperature with suitable jump is applied as the wall thermal boundary condition; however, two types of thermal inlet boundary conditions are investigated at the inlet. We firstly examine the classical inlet boundary condition, which specifies a uniform temperature distribution right at the real inlet. Alternatively, we apply the same boundary condition but at a fictitious place far upstream of the real channel inlet. To validate our results,... 

    Asymptotic and exact analysis for constructal optimization of microchannel heat sink

    , Article 1st ASME Micro/Nanoscale Heat Transfer International Conference, MNHT08, Tainan, 6 January 2008 through 9 January 2008 ; Volume Parts A and B , 2008 , Pages 791-799 ; 0791842924 (ISBN); 9780791842928 (ISBN) Asgari, O ; Saidi, M. H ; Sharif University of Technology
    2008
    Abstract
    Microchannels are at the fore front of today's cooling technologies. They are widely being considered for cooling of electronic devices and in micro heat exchanger systems due to their ease of manufacture. One issue which arises in the use of microchannels is related to the small length scale of the channel or channel cross-section. In this work, the maximum heat transfer and the optimum geometry for a given pressure loss have been calculated for forced convective heat transfer in microchannels of various cross-section having finite volume for laminar flow conditions. Solutions are presented for 10 different channel cross sections, namely parallel plate channel, circular duct, rectangular... 

    Exchange flow between a canopy and open water

    , Article Journal of Fluid Mechanics ; Volume 611 , 25 September , 2008 , Pages 237-254 ; 00221120 (ISSN) Jamali, M ; Zhang, X ; Nepf, H. M ; Sharif University of Technology
    2008
    Abstract
    This paper theoretically and experimentally investigates the exchange flow due to temperature differences between open water and a canopy of aquatic plants. A numerical model is used to study the interfacial shape, frontal velocity and total volumetric exchange, and their dependence on a dimensionless vegetation drag parameter. The numerical predictions are consistent with the laboratory measurements. There is a short initial period in which the force balance is between buoyancy and inertia, followed by drag-dominated flow for which there is a balance between buoyancy and drag forces. After the initial stage, the gravity current propagating into the canopy takes a triangular shape whereas... 

    Modified incompressible SPH method for simulating free surface problems

    , Article Fluid Dynamics Research ; Volume 40, Issue 9 , 2008 , Pages 637-661 ; 01695983 (ISSN) Ataie Ashtiani, B ; Shobeyri, G ; Farhadi, L ; Sharif University of Technology
    2008
    Abstract
    An incompressible smoothed particle hydrodynamics (I-SPH) formulation is presented to simulate free surface incompressible fluid problems. The governing equations are mass and momentum conservation that are solved in a Lagrangian form using a two-step fractional method. In the first step, velocity field is computed without enforcing incompressibility. In the second step, a Poisson equation of pressure is used to satisfy incompressibility condition. The source term in the Poisson equation for the pressure is approximated, based on the SPH continuity equation, by an interpolation summation involving the relative velocities between a reference particle and its neighboring particles. A new form... 

    An experimental investigation of the reduced frequency effects into pressure coefficients of a plunging airfoil

    , Article 7th International Conference on Advances in Fluid Mechanics, AFM'08, The New Forest, 21 May 2008 through 23 May 2008 ; Volume 59 , 2008 , Pages 153-161 ; 17433533 (ISSN); 9781845641092 (ISBN) Mani, M ; Ajalli, F ; Soltani, M. R ; WIT Transactions on Engineering Sciences ; Sharif University of Technology
    2008
    Abstract
    Aerodynamic coefficients on a two dimensional plunging airfoil, in a low-speed wind tunnel are presented. Dynamic motion was produced by plunging the model over a range of reduced frequencies, and mean angles of attack. The Reynolds number in the present test was held fixed (Re = 1.5×10 5), and the reduced frequency was varied in an almost wide range. Surface static pressure distribution was measured on the upper and lower sides of the model, during the oscillating motion. It was found that reduced frequency had strong effects on the pressure distribution, near the leading edge of the airfoil. For mean equivalent angles of attack of 0, 5 degrees, hysteresis loops on the upper surface of the... 

    Characterization of fracture dynamic parameters to simulate naturally fractured reservoirs

    , Article International Petroleum Technology Conference, IPTC 2008, Kuala Lumpur, 3 December 2008 through 5 December 2008 ; Volume 1 , 2008 , Pages 473-485 ; 9781605609546 (ISBN) Bahrami, H ; Siavoshi, J ; Parvizi, H ; Esmaili, S ; Karimi, M. H ; Nasiri, A ; Sharif University of Technology
    2008
    Abstract
    Fractures identification is essential during exploration, drilling and well completion of naturally fractured reservoirs since they have a significant impact on flow contribution. There are different methods to characterize these systems based on formation properties and fluid flow behaviour such as logging and testing. Pressure-transient testing has long been recognized as a reservoir characterization tool. Although welltest analysis is a recommended technique for fracture evaluation, but its use is still not well understood. Analysis of pressure transient data provides dynamic reservoir properties such as average permeability, fracture storativity and fracture conductivity.An infusion of... 

    New approach in the prediction of RDC liquid-liquid extraction column parameters

    , Article Chemical Engineering and Technology ; Volume 31, Issue 7 , 2008 , Pages 971-977 ; 09307516 (ISSN) Bastani, D ; Shahalami, S. M ; Sharif University of Technology
    2008
    Abstract
    The liquid-liquid extraction process is well-known for its complexity and often entails intensive modeling and computational efforts to simulate its dynamic behavior. This paper presents a new application of the Genetic Algorithm (GA) to predict the modeling parameters of a chemical pilot plant involving a rotating disc liquid-liquid extraction contactor (RDC). In this process, the droplet behavior of the dispersed phase has a strong influence on the mass transfer performance of the column. The mass transfer mechanism inside the drops of the dispersed phase was modeled by the Handlos-Baron circulating drop model with consideration of the effect of forward mixing. Using the Genetic Algorithm... 

    Two-dimensional model of melt flows and interface instability in aluminum reduction cells

    , Article Light Metals 2008, New Orleans, LA, 9 March 2008 through 13 March 2008 ; 2008 , Pages 443-448 ; 01470809 (ISSN); 9780873397100 (ISBN) Kadkhodabeigi, M ; Sharif University of Technology
    2008
    Abstract
    We derive a new non-linear two dimensional model for melt flows and interface instability in aluminum reduction cells. This model is based on non-linear de St. Venant shallow water equations and contains the main features of an aluminum reduction cell. In this model we consider linear friction terms but in a new way that has not been considered in previous works. Our results are in good agreement with the results of simulation of viscous flow. This model is applicable both in determination of melt flows in molten aluminum and cryolite layers and also in finding the extreme limit for stability of interfacial waves in an aluminum reduction cell  

    Dynamic anlysis of an amphibious single wheel robot part1: Moving in straight path

    , Article 31st Mechanisms and Robotics Conference, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007, Las Vegas, NV, 4 September 2007 through 7 September 2007 ; Volume 8 PART B , 2008 , Pages 927-932 ; 0791848027 (ISBN); 9780791848029 (ISBN); 0791848094 (ISBN); 9780791848098 (ISBN) Marzban, M ; Alasty, A ; Sharif University of Technology
    2008
    Abstract
    A single wheel, gyroscopically stabilized robot is a sharpedged wheel actuated by a spinning flywheel for steering and a drive motor for propulsion. The spinning flywheel acts as a gyroscope to stabilize the robot and it can be tilted to achieve steering. In this paper first the kinematics of a single wheel robot, like Gyrover, in water is considered and then a simple mechanism for its movement in water is proposed. After hydrodynamic analysis of the robot a complete dynamics model is designed with Lagrange energy method. The only simplification used here is neglecting the added mass effect in hydrodynamic analysis. This complete model can be used for examining the behavior of the robot in... 

    Development of an equation to predict radial modulus of elasticity for single-walled carbon nanotubes

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 222, Issue 6 , 2008 , Pages 1109-1115 ; 09544062 (ISSN) Sakhaee Pour, A ; Ahmadian, M. T ; Gerami, A ; Sharif University of Technology
    2008
    Abstract
    Finite element (FE) method is used to model radial deformation of single-walled carbon nanotube (SWCNT) under hydrostatic pressure. Elastic deformation of the nanostructure is simulated via elastic beams. Properties of the beam element are calculated by considering the stiffness of the covalent bonds between the carbon atoms in the hexagonal lattice. By applying the beam elements in a three-dimensional space, elastic properties of the SWCNT in transverse direction are obtained. In this regard, influences of diameter and tube wall thickness on the radial and circumferential elastic moduli of zigzag and armchair SWCNTs are considered. It is observed that there is a good agreement between the... 

    Stabilized Meshless Local Petrov-Galerkin (MLPG) method for incompressible viscous fluid flows

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 29, Issue 2 , 2008 , Pages 75-94 ; 15261492 (ISSN) Haji Mohammadi, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, the truly Meshless Local Petrov-Galerkin (MLPG) method is extended for computation of steady incompressible flows, governed by the Navier-Stokes equations (NSE), in vorticity-stream function formulation. The present method is a truly meshless method based on only a number of randomly located nodes. The formulation is based on two equations including stream function Poisson equation and vorticity advection-dispersion-reaction equation (ADRE). The meshless method is based on a local weighted residual method with the Heaviside step function and quartic spline as the test functions respectively over a local subdomain. Radial basis functions (RBF) interpolation is employed in shape... 

    Using vorticity as an indicator for the generation of optimal coarse grid distribution

    , Article Transport in Porous Media ; Volume 75, Issue 2 , 2008 , Pages 167-201 ; 01693913 (ISSN) Ashjari, M. A ; Firoozabadi, B ; Mahani, H ; Sharif University of Technology
    2008
    Abstract
    An improved vorticity-based gridding technique is presented and applied to create optimal non-uniform Cartesian coarse grid for numerical simulation of two-phase flow. The optimal coarse grid distribution (OCGD) is obtained in a manner to capture variations in both permeability and fluid velocity of the fine grid using a single physical quantity called "vorticity". Only single-phase flow simulation on the fine grid is required to extract the vorticity. Based on the fine-scale vorticity information, several coarse grid models are generated for a given fine grid model. Then the vorticity map preservation error is used to predict how well each coarse grid model reproduces the fine-scale... 

    Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics

    , Article Transport in Porous Media ; Volume 74, Issue 3 , 2008 , Pages 331-346 ; 01693913 (ISSN) Vakilha, M ; Manzari, M. T ; Sharif University of Technology
    2008
    Abstract
    The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy's law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can... 

    MODSharp: Regional-scale numerical model for quantifying groundwater flux and contaminant discharge into the coastal zone

    , Article Environmental Modelling and Software ; Volume 22, Issue 9 , 2007 , Pages 1307-1315 ; 13648152 (ISSN) Ataie Ashtiani, B ; Sharif University of Technology
    2007
    Abstract
    In this paper the development of a quasi-three-dimensional numerical model that can be used for quantifying groundwater inputs and associated contaminant discharged from coastal aquifers into the coastal zone at a regional scale is presented. The present model is called MODSharp. In order to handle problems at a regional scale, the sharp interface approach which is used for conceptualising seawater intrusion, is applied to this model. This model can be used for the simulation of groundwater flow and contaminant transport in layered coastal aquifers at a regional scale. The method of characteristics is used to solve the advection-dispersion equation, which governs contaminant transport in... 

    Calculation of thermodynamic properties of simple fluids using a new derived pair correlation function

    , Article Fluid Phase Equilibria ; Volume 254, Issue 1-2 , 2007 , Pages 138-143 ; 03783812 (ISSN) Khanpour, M ; Parsafar, G. A ; Najafi, B ; Sharif University of Technology
    2007
    Abstract
    Based on a new derived radial distribution function (RDF) for potentials with a hard-core we have presented in this paper a method to apply the derived RDF for calculating thermodynamic properties of real fluids up to moderate densities. In order to use the derived RDF for real fluids, one of the potential parameters is chosen in such a way that the RDF behaves more like that for a real fluid. Hence we have been able to calculate all thermodynamic properties of a simple fluid analytically. We have then applied our procedure to a Lennard-Jones fluid and compared the results with simulation data. The agreement is good up to moderate densities, i.e. ρ* ≤ 0.6, which lies in the liquid range of... 

    Studies of the rate of water evaporation through adsorption layers using drop shape analysis tensiometry

    , Article Journal of Colloid and Interface Science ; Volume 308, Issue 1 , 2007 , Pages 249-253 ; 00219797 (ISSN) Fainerman, V. B ; Makievski, A. V ; Krägel, J ; Javadi, A ; Miller, R ; Sharif University of Technology
    2007
    Abstract
    With modified measuring procedure and measuring cell design in the drop profile tensiometer PAT, it became possible to study the rate of water evaporation through adsorbed or spread surface layers. This method was employed to measure the rate of water evaporation from drops covered by adsorbed layers of some proteins and surfactants, in particular n-dodecanol. It was shown that the formation of dense (double or condensed) adsorbed layers of protein and the formation of 2D-condensed n-dodecanol layer decrease the water evaporation rate by 20-25% as compared with pure water. At the same time, the adsorbed layers of ordinary surfactants (sodium dodecyl sulfate and nonionic ethoxylated... 

    Oblique weir equation using incomplete self-similarity

    , Article Canadian Journal of Civil Engineering ; Volume 33, Issue 10 , 2006 , Pages 1241-1250 ; 03151468 (ISSN) Borghei, S. M ; Kabiri Samani, A. R ; Nekoee, N ; Sharif University of Technology
    2006
    Abstract
    Incomplete self-similarity (ISS) concept is employed to develop the equations from existing experimental results of flow over an oblique rectangular sharp-crested weir for both free and submerged flow. The stage-discharge relationship is obtained by theoretical analysis, based on the application of the dimensional analysis and the ISS theory. For analysis, the relations were found by trial and error procedure using the SPSS mathematical computer program that estimates the relation among multi-variable functions. Thus, equations to estimate the flow characteristics for both free and submerged flow are proposed. The results show a better compatibility with the experimental data than the...