Loading...
Search for: fluidic-devices
0.007 seconds
Total 64 records

    Fluid-structure interaction analysis in microfluidic devices: A dimensionless finite element approach

    , Article International Journal for Numerical Methods in Fluids ; Volume 68, Issue 9 , 2012 , Pages 1073-1086 ; 02712091 (ISSN) Afrasiab, H ; Movahhedy, M. R ; Assempour, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the so-called small time-step instability in finite element simulation of the fluid part is considered in fluid-structure interaction (FSI) problems in which a high-frequency vibrating structure interacts with an incompressible fluid. Such a situation is common in many microfluid manipulating devices. A treatment has been proposed that uses the dimensionless set of FSI governing equations in order to scale up the problem time step to a proper level that precludes the potential small time-step instability. Two-dimensional and three-dimensional finite element simulations of a mechanical micropumping device are performed to verify the efficiency of the presented approach. Solid... 

    Electrospun polyethersolfone nanofibrous membrane as novel platform for protein immobilization in microfluidic systems

    , Article Journal of Biomedical Materials Research - Part B Applied Biomaterials ; Volume 106, Issue 3 , April , 2018 , Pages 1108-1120 ; 15524973 (ISSN) Mahmoudifard, M ; Vossoughi, M ; Soudi, S ; Soleimani, M ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    In the present study, the feasibility of electrospun polyethersolfone (PES) nanofibrous membrane as the solid substrate for microfluidic based immunoassays to enhance the density of immobilized antibody on the surface of membrane was assessed. Conversely, the efficacy of antibody immobilization was compared by two different strategies as 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) coupling chemistry and hydrophobic interaction. Compared to conventional immunoassays carried out in plates or gels, microfluidic based immunoassays grant a lot of advantages such as a consumption of little samples and reagents, shorter analysis time, and higher efficiency.... 

    Novel microfluidic graphene oxide–protein amperometric biosensor for detecting sulfur compounds

    , Article Biotechnology and Applied Biochemistry ; Volume 66, Issue 3 , 2019 , Pages 353-360 ; 08854513 (ISSN) Ghaemi, A ; Abdi, K ; Javadi, S ; Shehneh, M. Z ; Yazdian, F ; Omidi, M ; Rashedi, H ; Haghiralsadat, B. F ; Asayeshnaeini, O ; Sharif University of Technology
    Wiley-Blackwell Publishing Ltd  2019
    Abstract
    Sulfur compounds are essential for many industries and organisms; however, they cause serious respiratory problems in human beings. Therefore, determination of sulfur concentration is of paramount importance. The research approach in the field of detecting contaminants has led to smaller systems that provide faster and more effective ways for diagnosis purposes. In this study, a novel portable amperometric graphene oxide–protein biosensor platform is investigated. The main characteristic of this structure is the implementation of a microfluidic configuration. With albumin metalloprotein as the biorecognition element, graphene oxide was synthesized and characterized by transmission electron... 

    Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review

    , Article Biomedical Microdevices ; Volume 21, Issue 4 , 2019 ; 13872176 (ISSN) Ghasemi Toudeshkchoui, M ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Microfluidic systems (MFS) provide a range of advantages in biomedical applications, including improved controllability of material characteristics and lower consumption of reagents, energy, time and money. Fabrication of MFS employs various materials, such as glass, silicon, ceramics, paper, and metals such as gold, copper, aluminum, chromium and titanium. In this review, gold thin film microfluidic channels (GTFMFC) are discussed with reference to fabrication methods and their diverse use in chemical and biomedical applications. The advantages of gold thin films (GTF) include flexibility, ease of manufacture, adhesion to polymer surfaces, chemical stability, good electrical conductivity,...