Loading...
Search for: fluoride
0.011 seconds

    Electron beam induced modifications in crystalline structure of polyvinylidene fluoride/nanoclay composites

    , Article Radiation Measurements ; Vol. 60 , January , 2014 , pp. 1-6 ; ISSN: 13504487 Rahmani, P ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Abstract
    PVDF/nanoclay nanocomposites were prepared via melt mixing method. The intercalated dispersion of the nanoclay in PVDF matrix was confirmed by XRD. According to FTIR, DSC and XRD results, the presence of nanoclay facilitated transition from α-to-β crystalline phase. Electron beam irradiation decreased the melting point of the nanocomposites. The decrease in melting point of the nanocomposites was about 11 C at 500 kGy. The crystallinity of nanocomposites increased at an irradiation dose of 100 kGy and decreased at higher irradiation doses. The extent of crosslinking of the nanocomposites increased significantly with irradiation up to 300 kGy. The nanoclay intensified the increase in yield... 

    Characterization of PVDF/Nanoclay Nanocomposites Prepared by Melt, Solution, and Co-Precipitation Methods

    , Article International Journal of Polymer Analysis and Characterization ; Volume 17, Issue 4 , 2012 , Pages 291-301 ; 1023666X (ISSN) Rahmani, P ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    2012
    Abstract
    Poly (vinylidene fluoride) (PVDF) nanocomposites were prepared via melt, solution, and co-precipitation mixing methods using Cloisite 30B as organoclay. The results from X-ray diffraction patterns display intercalation or exfoliation of nanoclay depending on the nanocomposite preparation method. The solvent cast and co-precipitated samples showed exfoliation, while intercalation was observed in the nanocomposites prepared by melt mixing. Introducing organoclay induced formation of β-crystals in the PVDF nanocomposites as evidenced by XRD and FT-IR. FT-IR analysis indicated that the samples prepared by the co-precipitation method had a higher tendency for β phase formation, while the sample... 

    PVDF/PAN blend membrane: preparation, characterization and fouling analysis

    , Article Journal of Polymers and the Environment ; 2016 , Pages 1-11 ; 15662543 (ISSN) Anvari, A ; Azimi Yancheshme, A ; Rekaabdar, F ; Hemmati, M ; Tavakolmoghadam, M ; Safekordi, A ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Ultrafiltration membranes were prepared from blend of the poly(vinylidene fluoride) (PVDF) with polyacrylonitrile (PAN) via phase inversion method induced by immersion precipitation. N,N-dimethylacetamide (DMAc) and water were used as solvent and coagulant (non-solvent), respectively. The effect of blending ratio on the morphology and antifouling behavior of the prepared membranes was investigated. The performance of the membranes was evaluated by using cross flow filtration of pure water and buffered bovine serum albumin (BSA) solution as feed. Contact angle measurements indicated that the hydrophilicities of the PVDF/PAN membranes increased by increasing PAN concentration in the casting... 

    PVDF/PAN blend membrane: preparation, characterization and fouling analysis

    , Article Journal of Polymers and the Environment ; Volume 25, Issue 4 , 2017 , Pages 1348-1358 ; 15662543 (ISSN) Anvari, A ; Yancheshme, A. A ; Rekaabdar, F ; Hemmati, M ; Tavakolmoghadam, M ; Safekordi, A ; Sharif University of Technology
    Abstract
    Ultrafiltration membranes were prepared from blend of the poly(vinylidene fluoride) (PVDF) with polyacrylonitrile (PAN) via phase inversion method induced by immersion precipitation. N,N-dimethylacetamide (DMAc) and water were used as solvent and coagulant (non-solvent), respectively. The effect of blending ratio on the morphology and antifouling behavior of the prepared membranes was investigated. The performance of the membranes was evaluated by using cross flow filtration of pure water and buffered bovine serum albumin (BSA) solution as feed. Contact angle measurements indicated that the hydrophilicities of the PVDF/PAN membranes increased by increasing PAN concentration in the casting... 

    Fluoride ions removal using yttrium alginate biocomposite from an aqueous solution

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 30, Issue 1 , 2017 , Pages 1-6 ; 17281431 (ISSN) Kosari, M ; Sepehrian, H ; Sharif University of Technology
    Materials and Energy Research Center  2017
    Abstract
    Removal of fluoride ions was investigated using a new adsorbent of yttrium alginate biocomposite (YALG). Effect of various parameters such as pH, contact time, initial concentration of fluoride ions and temperature on the sorption capacity of adsorbent was studied. Performing a mathematical assessment of fluoride sorption, isotherm and kinetics models including Freundlich & Langmuir isotherms and pseudo first & second order kinetics were applied on experimental equilibrium results through this work. Isotherm analysis revealed that Langmuir model showed a better evaluation from sorption equilibrium data than Freundlich. Based on kinetics evaluation, the pseudo second-order equation was... 

    Synthesis of fulvene vinyl ethers by gold catalysis

    , Article Chemistry - A European Journal ; Volume 26, Issue 23 , 2020 , Pages 5280-5287 Ahrens, A ; Schwarz, J ; Lustosa, D. M ; Pourkaveh, R ; Hoffmann, M ; Rominger, F ; Rudolph, M ; Dreuw, A ; Hashmi, A. S. K ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Gold-catalyzed cyclization of 1,5-diynes with ketones as reagents and solvent provides diversely substituted vinyl ethers under mild conditions. The regioselectivity of such gold-catalyzed cyclizations is usually controlled by the scaffold of the diyne. Herein, we report the first solvent-controlled switching of regioselectivity from a 6-endo-dig- to 5-endo-dig-cyclization in these transformations, providing fulvene derivatives. With respect to the functional-group tolerance, aryl fluorides, chlorides, bromides, and ethers are tolerated. Furthermore, the mechanism and selectivity are put to scrutiny by experimental studies and a thermodynamic analysis of the product. Additionally,... 

    The dependency of optical properties on density for hot pressed MgF2

    , Article Infrared Physics and Technology ; Volume 51, Issue 6 , 2008 , Pages 546-549 ; 13504495 (ISSN) Nofar, M ; Madaah Hosseini, H. R ; Asghari Shivaee, H ; Sharif University of Technology
    2008
    Abstract
    The effects of the most important parameters of hot pressing, including temperature, time and pressure on densification, microstructure and infrared transparency of MgF2 ceramics are discussed. The results show that the absorption or scattering of incident radiation is strongly dependent on the amount of porosity. By increasing the temperature or the pressure, transparency at infrared wavelengths has been increased due to the rise in density. For the longer hot pressing times, a continuous increase in density and infrared transparency has been seen as well. Cold pressing before hot press has minor effects on the density and infrared transparency of MgF2. © 2008 Elsevier B.V. All rights... 

    Gellan gel comprising short PVDF based-nanofibers: The effect of piezoelectric nanofiber on the mechanical and electrical behavior

    , Article Materials Today Communications ; Volume 26 , 2021 ; 23524928 (ISSN) Mohseni, M ; Ramazani S. A., A ; H-Shirazi, F ; Hassanzadeh Nemati, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Gel-fiber structure with the potential of extracellular matrix (ECM) mimics can be introduced as a suitable candidate for bioengineering applications. In this study, piezoelectric gellan gel-fiber was prepared with incorporating poly(vinylidenefluoride) (PVDF)/glass-flake in the gellan matrix. Glass-flake nanoparticles were modified with silane group, PVDF/glass-flake nanofibers were synthesized and short-strand nanofibers were fabricated using the mechanical homogenizer method. Brunauer–Emmett–Teller (BET), Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) analyses were used for surface modification study, and scanning electron microscopy (SEM),... 

    Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation

    , Article Journal of Membrane Science ; Volume 537 , 2017 , Pages 140-150 ; 03767388 (ISSN) Seyed Shahabadi, S. M ; Rabiee, H ; Seyedi, S. M ; Mokhtare, A ; Brant, J. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this study, superhydrophobic dual layer membranes with highly porous structure were fabricated using electrospinning and electrospraying techniques. Electrospinning method was used to produce the support nanofibrous layer using polyvinylidene fluoride-co-hexafluoropropylene (PH) as the polymer and a mixed solvent system of N,N-Dimetylformamide (DMF) and acetone. Afterwards, hydrophobic, functionalized TiO2 nanoparticles were deposited on the surface of the support layer using the electrospraying technique. TiO2 chemical functionalization and their deposition on the support layer were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The... 

    Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: A feed forward neural network modelling

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Vol. 29 , January , 2014 , pp. 317-327 ; ISSN: 17516161 Rajabzadeh, G ; Salehi, S ; Nemati, A ; Tavakoli, R ; Solati Hashjin, M ; Sharif University of Technology
    Abstract
    Despite brilliant properties of glass ionomer cement (GIC), its weak mechanical property poses an obstacle for its use in medical applications. The present research aims to formulate hydroxyapatite/yttria-stabilized zirconia (HA/YSZ) in the composition of GIC to enhance mechanical properties and to improve fluoride release of GIC. HA/YSZ was synthesized via a sol-gel method and characterized by applying X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photo-emission spectroscopy (XPS) and simultaneous thermal analysis (STA) along with transmission electron microscopy (TEM) methods. The synthesized nanocomposite was mixed with GIC at a fixed composition of 5.... 

    Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19

    , Article Journal of Medical Engineering and Technology ; Volume 45, Issue 6 , 2021 , Pages 423-433 ; 03091902 (ISSN) Kabir, H ; Merati, M ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19, is one of the most contagious viruses resulting in a progressive pandemic. Since specific antiviral treatments have not been developed yet and its fatal rate is almost high, early and fast detection is critical for controlling the outbreak. In this study, a piezoelectric microcantilever biosensor has been designed for detecting COVID-19 samples directly without requiring preparation steps. The biosensor acts as a transducer and is coated with the related antibody. When the SARS-CoV-2 antigens adsorbed on the microcantilever top surface through their spike proteins, a surface stress due to the mass change would be... 

    Construction of New Polymer Electrolyte Based on PVDF-HFP, Plasticizer DMA AndSiO2nano-particles with High Ionic Conductivity for Lithium Batteries

    , M.Sc. Thesis Sharif University of Technology Didari, Sina (Author) ; Baghalha, Morteza (Supervisor) ; Khorasheh, Farhad (Supervisor)
    Abstract
    Polymer electrolytes are most frequently used electrolytes especially in lithium ion batteries. The gel-polymer and polymer-ceramic electrolytes were synthesized using DMA plasticizer, LiClO4, and SiO2 ceramic Nano fillers through coating method. EIS, FTIR, XRD, SEM, and TGA analyses were carried out on electrolytes. The optimum amount of perchlorate and polymer was obtained 0.5 M and 5% w/w, respectively. Also, the optimum amount of silica was obtained 2% w/w. the optimizations were carried out suing conductometry. The EIS analysis showed the ionic conductance of gel-polymer 1.8 mS.cm-1 while that of ceramic-polymer was obtained 2.8 mS.cm-1  

    Advanced gel polymer electrolyte for lithium-ion polymer batteries

    , Article ASME 2013 7th Int. Conf. on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology ; July , 2013 ; 9780791855515 (ISBN) Zhang, R ; Hashemi, N ; Ashuri, M ; Montazami, R ; Advanced Energy Systems Division, Solar Energy Division ; Sharif University of Technology
    2013
    Abstract
    We report improved performance of Li-ion polymer batteries through advanced gel polymer electrolytes (GPEs). Compared to solid and liquid electrolytes, GPEs are advantageous as they can be fabricated in different shapes and geometries; also ionic properties are significantly superior to that of solid and liquid electrolytes. We have synthetized GPE in form of membranes by trapping ethylene carbonate and propylene carbonate in a composite of polyvinylidene fluoride and N-methylpyrrolidinore. By applying phase-transfer method, we synthetized membranes with micro-pores, which led to higher ionic conductivity. The proposed membrane is to be modified further to have higher capacity, stronger... 

    Development of plasma and/or chemically induced graft co-polymerized electrospun poly(vinylidene fluoride) membranes for solute separation

    , Article Separation and Purification Technology ; Volume 108 , 2013 , Pages 196-204 ; 13835866 (ISSN) Savoji, H ; Rana, D ; Matsuura, T ; Tabe, S ; Feng, C ; Sharif University of Technology
    2013
    Abstract
    Nanofiber membranes were fabricated by electrospinning poly(vinylidene fluoride). The electrospun nanofiber membranes were further modified by grafting of acrylic acid (AA) and methacrylic acid (MAA) over the surfaces of the membranes. Plasma AA graft was attempted only, and the results indicated the partial membrane pore filling with grafted AA. For MAA grafting, chemically induced polymerization using benzoyl peroxide and hydrogen peroxide was attempted. The combination of plasma and chemically induced MAA graft polymerization was also attempted. The membranes were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and static contact angle (SCA)... 

    Dextran-graft-poly(hydroxyethyl methacrylate) gels: A new biosorbent for fluoride removal of water

    , Article Designed Monomers and Polymers ; Volume 16, Issue 2 , 2013 , Pages 127-136 ; 1385772X (ISSN) Ahmari, A ; Mousavi, S. A ; Amini Fazl, A ; Amini Fazl, M. S ; Ahmari, R ; Sharif University of Technology
    2013
    Abstract
    Synthesis of dextran-graft-poly(hydroxyethyl methacrylate) gels as a new fluoride biosorbent was considered in this work. For this propose, the Taguchi experimental design method was used for optimizing the synthetic conditions of the gels to reach high level of fluoride absorbency. The effects of three main parameters including concentrations of monomer (hydroxyethyl methacrylate), crosslinking agent (ethylene glycol dimethacrylate), and initiator (ammonium persulfate) on the final properties of the prepared gels were investigated. The proposed mechanism for grafting and chemically crosslinking reactions was proved with equilibrium water absorption, Fourier-transformed infrared, scanning... 

    Studies on the recovery of uranium from nuclear industrial effluent using nanoporous silica adsorbent

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 4 , October , 2012 , Pages 629-636 ; 17351472 (ISSN) Sepehrian, H ; Samadfam, M ; Asadi, Z ; Sharif University of Technology
    Springer  2012
    Abstract
    In this paper, the sorption of uranium onto nanoporous silica adsorbent in the presence of nitrate, sulfate, chloride, fluoride and phosphate was studied. The effect of contact time between the nanoporous sorbent and aqueous solution, pH and initial concentration of uranium was also investigated. Uranium sorption onto nanoporous silica adsorbent is a very fast process as sorption rate increases with pH increment. Optimum pH for uranium sorption was 4-8. Experimental sorption isotherm is successfully described by Langmuir and Freundlich models. The results obtained by batch experiments showed that the presence of high concentration of nitrate, sulfate, chloride and phosphate anions alone had... 

    Corrosion detection in pipes by piezoelectric sensors using Artificial Neural Network

    , Article Advanced Materials Research, 4 November 2011 through 6 November 2011 ; Volume 403-408 , November , 2012 , Pages 748-752 ; 10226680 (ISSN) ; 9783037853122 (ISBN) Rafezi, H ; Rahmani, B ; Sharif University of Technology
    2012
    Abstract
    Defect detection in pipes is an essential task specially for sensitive applications such as oil and gas industry where special cares are required. Corrosion is a common defect in pipes which has attracted attention of researchers. In present work a non-destructive methodology for pipe corrosion monitoring is introduced. Polymer of Vinylidene Fluoride (PVDF) Piezoelectric is used as the sensor to measure strain variations affected by internal corrosion. High sensitivity and low cost of piezoelectric materials made them a good candidate for precise industrial applications. Different corrosion conditions (i.e. corrosion location along pipe and corrosion depth) are modeled and sensors voltages... 

    Influence of additives on the morphology of PVDF membranes based on phase diagram: thermodynamic and experimental study

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 21 , 2018 ; 00218995 (ISSN) Mohsenpour, S ; Khosravanian, A ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    In the present study, the morphology of asymmetric poly(vinylidene fluoride) blend membranes which were prepared by the phase inversion method is rationalized by comparing two non-dimensional number represent thermodynamic and kinetic properties of the prepared membrane. These two parameters change phase diagram and demixing rate between solvent and nonsolvent. TiO2 nanoparticles and polyvinylpyrrolidone were used as additives. Hansen solubility parameters of the components are calculated by Van Krevelen method. Furthermore, kinetic and thermodynamic properties of the prepared solutions are determined by drawing phase diagrams and controlling mass transfer rate during precipitation of... 

    Mechanism of nanostructured fluorapatite formation from CaO, CaF2 and P2O5 precursors by mechanochemical synthesis

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 43, Issue 3-4 , 2018 , Pages 201-210 ; 14686783 (ISSN) Nikonam Mofrad,, R ; Sadrnezhaad, S. K ; Vahdati Khaki, J ; Sharif University of Technology
    Science Reviews 2000 Ltd  2018
    Abstract
    We determined the mechanism of mechanochemical synthesis of fluorapatite from CaO, CaF2 and P2O5 by characterisation of the intermediate compounds. We used atomic absorption spectroscopy, X-ray diffraction, field emission scanning electron microscopy, FTIR spectroscopy and transmission electron microscopy to find the transitional compounds. Investigation of the binary and ternary powder mixtures revealed the appearance of H3PO4, Ca(OH)2, Ca2P2O7 and CaCO3 as the intermediate compounds. At early stages of the milling, conversions of P2O5 to H3PO4 and CaO to Ca(OH)2 occurred in the wet atmosphere. Later, a combination of Ca(OH)2 and H3PO4 formed Ca2P2O7 while the unreacted CaO was converted to... 

    Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural-like cells

    , Article Journal of Cellular Physiology ; Volume 234, Issue 8 , 2019 , Pages 13617-13628 ; 00219541 (ISSN) Esmaeili, E ; Soleimani, M ; Ghiass, M. A ; Hatamie, S ; Vakilian, S ; Zomorrod, M. S ; Sadeghzadeh, N ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    While the differentiation factors have been widely used to differentiate mesenchymal stem cells (MSCs) into various cell types, they can cause harm at the same time. Therefore, it is beneficial to propose methods to differentiate MSCs without factors. Herein, magnetoelectric (ME) nanofibers were synthesized as the scaffold for the growth of MSCs and their differentiation into neural cells without factors. This nanocomposite takes the advantage of the synergies of the magnetostrictive filler, CoFe 2 O 4 nanoparticles (CFO), and piezoelectric polymer, polyvinylidene difluoride (PVDF). Graphene oxide nanosheets were decorated with CFO nanoparticles for a proper dispersion in the polymer through...