Loading...
Search for: focusing
0.005 seconds
Total 87 records

    Experimental investigation of tertiary oil gravity drainage in fractured porous media

    , Article Special Topics and Reviews in Porous Media ; Volume 1, Issue 2 , 2010 , Pages 179-191 ; 21514798 (ISSN) Rezaveisi, M ; Rostami, B ; Kharrat, R ; Ayatollahi, Sh ; Ghotbi, C ; Sharif University of Technology
    2010
    Abstract
    The amount of residual oil trapped in the matrix of a fractured reservoir after water drive, either natural water drive or water injection, depends on the wettability of the matrix rocks. Gas oil gravity drainage (GOGD) has been proposed as the tertiary oil recovery process for this type of oil reservoir. The current work focuses on experimental investigation of tertiary GOGD in fractured porous media under different types of matrix wettability. Results of a set of experiments performed in artificial porous media composed of sand packs and glass beads of different wettability have been used to check the GOGD rate and the ultimate oil recovery for previously waterflooded models. A novel... 

    Prediction of temperature distribution and volume of lesion during HIFU therapy

    , Article ITNG 2009 - 6th International Conference on Information Technology: New Generations, 27 April 2009 through 29 April 2009, Las Vegas, NV ; 2009 , Pages 1468-1473 ; 9780769535968 (ISBN) Heydari, M ; Jahed, M ; Sharif University of Technology
    Abstract
    Ultrasound hyperthermia is used to treat tumors in human tissue by heat. It is characterized by the application of high intensity focused ultrasound (HIFU), high local temperatures and short treating time of a few seconds. HIFU is a non-invasive treatment modality for a variety of cancers, including breast, prostate, kidney, liver, bone, uterus, and pancreatic cancers. Computer models have been used to determine tissue temperatures during ultrasound hyperthermia. In this work, we consider a liver tissue with a tumor at its center. We calculated temperature distribution in the presence a large blood vessel. We studied the effect of varying the exposure time (heating duration) and the diameter... 

    Fast and robust LRSD-Based sar/isar imaging and decomposition

    , Article IEEE Transactions on Geoscience and Remote Sensing ; Volume 60 , 2022 ; 01962892 (ISSN) Hashempour, H.R ; Moradikia, M ; Bastami, H ; Abdelhadi, A ; Soltanalian, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The earlier works in the context of low-rank-sparse-decomposition (LRSD)-driven stationary synthetic aperture radar (SAR) imaging have shown significant improvement in the reconstruction-decomposition process. Neither of the proposed frameworks, however, can achieve satisfactory performance when facing a platform residual phase error (PRPE) arising from the instability of airborne platforms. More importantly, in spite of the significance of real-time processing requirements in remote sensing applications, these prior works have only focused on enhancing the quality of the formed image, not reducing the computational burden. To address these two concerns, this article presents a fast and... 

    Evaluation of variation of permeability in liquefiable soil under earthquake loading

    , Article Computers and Geotechnics ; Volume 40 , 2012 , Pages 74-88 ; 0266352X (ISSN) Shahir, H ; Pak, A ; Taiebat, M ; Jeremić, B ; Sharif University of Technology
    2012
    Abstract
    Liquefaction phenomenon is usually accompanied by large amounts of settlement owing to disruption of soil structure. In addition to that, large settlement also occurs by a significant increase in soil permeability during seismic excitation. To properly simulate the post-liquefaction settlement, it is important to take the compressibility properties of the liquefied sand as well as the permeability increase into account. Using initial permeability coefficient in the course of simulation of liquefaction leads to underestimation of settlement. In addition to that, using unrealistic values for permeability may cause erroneous predictions of other aspects of soil behavior. Therefore, an accurate... 

    Fluorescent microscopy using localized excitation source with gold nanotriangles: A computational study

    , Article Photonics and Nanostructures - Fundamentals and Applications ; Volume 9, Issue 3 , 2011 , Pages 219-224 ; 15694410 (ISSN) Sasanpour, P ; Rashidian, B ; Vossoughi, M ; Sharif University of Technology
    2011
    Abstract
    A new method for fluorescent microscopy has been proposed. Proposed method uses indirect excitation of fluorophores with nanometer localized illuminating source. Localized source is created at corners of gold nanotriangles which are deposited on glass substrate. Actually the combination of gold nanotriangle (deposited on glass) acts as active substrate (where species will be placed) for our proposed method. The structure will be scanned with a focused beam of laser (or combination of beams). Due to electric field enhancement in corners and edges of nanotringle (because of surface plasmons), third order nonlinear effect will be enhanced accordingly. Enhancement in third order nonlinearity... 

    Layers from initial Rayleigh density profiles by directed nonlinear force driven plasma blocks for alternative fast ignition

    , Article Laser and Particle Beams ; Volume 27, Issue 1 , 2009 , Pages 149-156 ; 02630346 (ISSN) Yazdani, E ; Cang, Y ; Sadighi Bonabi, R ; Hora, H ; Osman, F ; Sharif University of Technology
    2009
    Abstract
    Measurement of extremely new phenomena during the interaction of laser pulses with terawatt and higher power and picoseconds with plasmas arrived at drastically different anomalies in contrast to the usual observations if the laser pulses were very clean with a contrast ratio higher than 108. This was guaranteed by the suppression of prepulses during less than dozens of ps before the arrival of the main pulse resulting in the suppression of relativistic self-focusing. This anomaly was confirmed in many experimental details, and explained and numerically reproduced as a nonlinear force acceleration of skin layers generating quasi-neutral plasma blocks with ion current densities above 1011... 

    Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1402-1414 ; 21691401 (ISSN) Khodabakhsh, F ; Norouzian, D ; Vaziri, B ; Ahangari Cohan, R ; Sardari, S ; Mahboudi, F ; Behdani, M ; Mansouri, K ; Mehdizadeh, A ; Sharif University of Technology
    Abstract
    Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD...