Loading...
Search for: foundation
0.027 seconds
Total 220 records

    Free vibrations of a cord composite laminate thin cylindrical shell on a pasternak foundation

    , Article 7th European Conference on Structural Dynamics, EURODYN 2008, 7 July 2008 through 9 July 2008 ; 2008 ; 9780854328826 (ISBN) Kargarnovin, M. H ; Mamandi, A ; Younesian, D ; Sharif University of Technology
    University of Southampton, Institute of Sound Vibration and Research  2008
    Abstract
    The underground and buried oil and gas pipelines are continuously in contact with earthen soils on the outer surface and compressible fluids on the inner surface. Most these earthen soils can be appropriately represented by a model named Pasternak. Similarly, undersea oil and gas pipelines and tubes of heat exchangers remain in contact with fluids on both sides and also rockets and missiles filled with solid and liquid fuels and shallow shells supported on soft and light filaments in space vehicles, boilers and storage tanks on floor grid work in ships can also be considered as thin circular cylindrical shells on a Pasternak foundation. The basic aim of the presented study is investigation... 

    Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

    , Article Structural Engineering and Mechanics ; Volume 83, Issue 6 , 2022 , Pages 757-770 ; 12254568 (ISSN) Alile, M. R ; Foyouzat, M. A ; Mofid, M ; Sharif University of Technology
    Techno-Press  2022
    Abstract
    In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for... 

    A case study on the soil–pile–structure interaction of a long span arched structure

    , Article Structure and Infrastructure Engineering ; Volume 12, Issue 12 , 2016 , Pages 1614-1633 ; 15732479 (ISSN) Kildashti, K ; Dolatshahi, K. M ; Mirghaderi, R ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Different concepts for modelling of soil-foundation in complete dynamic interaction analysis for a 110-m height 70-m span arched structure on 180 piles were investigated in this paper. The modelling approaches consisted of a sophisticated procedure to account for soil compliance and foundation flexibility by defining frequency-dependent springs and dashpots; namely, flexible-impedance base model. The results of this model were compared with those of the conventional modelling procedures; namely, fixed base model and flexible base model by defining frequency-independent springs. In the flexible-impedance base model, the substructure approach was employed through finite element modelling. To... 

    Seismic performance evaluation of a jointed arch dam

    , Article Structure and Infrastructure Engineering ; Volume 12, Issue 2 , 2016 , Pages 256-274 ; 15732479 (ISSN) Alembagheri, M ; Ghaemian, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Seismic performance and safety of a jointed arch dam, as an arch-shaped mass concrete structure, are investigated through the nonlinear incremental dynamic analysis. In this way, 12 proper ground motions are selected, each of them is scaled to 12 successively increasing intensity levels and applied to the dam. Three and seven contraction joints are inserted within the dam body, and stage construction is taken into account. Several main assumptions including dam–reservoir–foundation dynamic interaction, absorbing boundary conditions at the far-ends of the reservoir and foundation, and material and joint nonlinearities are considered. The failure modes of the dam are determined according to... 

    A numerical approach on side resistance of drilled shafts embedded in sandy soils

    , Article International Journal of Geotechnical Engineering ; 2019 ; 19386362 (ISSN) Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This study numerically investigates the side resistance of drilled shafts (bored piles) in sand using FLAC2D computer program. The results of the equations available in the literature are compared with the results of the present numerical study. A series of analyses is also conducted to assess the effects of various soil and pile parameters on the magnitude of side resistance of bored piles embedded in sand. Furthermore, the coupling (combined) effect of coefficient of lateral earth pressure with friction angle, and the coefficient of lateral earth pressure with a unit weight of soil on side resistance are investigated. The results show that the maximum effect of K0 on side resistance occurs... 

    A numerical approach on side resistance of drilled shafts embedded in sandy soils

    , Article International Journal of Geotechnical Engineering ; 2019 ; 19386362 (ISSN) Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This study numerically investigates the side resistance of drilled shafts (bored piles) in sand using FLAC2D computer program. The results of the equations available in the literature are compared with the results of the present numerical study. A series of analyses is also conducted to assess the effects of various soil and pile parameters on the magnitude of side resistance of bored piles embedded in sand. Furthermore, the coupling (combined) effect of coefficient of lateral earth pressure with friction angle, and the coefficient of lateral earth pressure with a unit weight of soil on side resistance are investigated. The results show that the maximum effect of K0 on side resistance occurs... 

    A numerical approach on side resistance of drilled shafts embedded in sandy soils

    , Article International Journal of Geotechnical Engineering ; Volume 14, Issue 6 , 2020 , Pages 644-652 Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This study numerically investigates the side resistance of drilled shafts (bored piles) in sand using FLAC2D computer program. The results of the equations available in the literature are compared with the results of the present numerical study. A series of analyses is also conducted to assess the effects of various soil and pile parameters on the magnitude of side resistance of bored piles embedded in sand. Furthermore, the coupling (combined) effect of coefficient of lateral earth pressure with friction angle, and the coefficient of lateral earth pressure with a unit weight of soil on side resistance are investigated. The results show that the maximum effect of K0 on side resistance occurs... 

    Numerical study of stiff diaphragm walls used to improve the performance of rocking foundation systems

    , Article Journal of Earthquake Engineering ; Volume 25, Issue 13 , 2021 , Pages 2628-2650 ; 13632469 (ISSN) Sadjadi, M ; Fadaee, M ; Ghannad, M. A ; Jahankhah, H ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    This research explores the effectiveness of the use of stiff diaphragm walls next to a rocking foundation through numerical simulation. This improvement technique is used as a means to increase in subsoil peripheral confinement and reduce rocking-induced settlement. The numerical model was verified by the centrifuge test of rocking shallow foundations on clay under cyclic loading. A parametric study was conducted to explore the effect of three stiff wall shapes on the performance of a rocking system. The general conclusion of the parametric investigation is that the use of stiff diaphragm walls reduced the sinking-dominated settlement response of the rocking system. © 2019 Taylor & Francis... 

    Drilled shafts in sand: failure pattern and tip resistance using numerical and analytical approaches

    , Article International Journal of Geotechnical Engineering ; 2021 ; 19386362 (ISSN) Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Drilled shafts are one of the most important types of pile foundations. Several researchers have suggested different soil failure patterns for driven piles; however, for drilled shafts, this issue is inadequately addressed in the literature. In this paper, a numerical approach was pursued to obtain the location and dimensions of plastic zones around the tip of drilled shafts. The dependence of the suggested failure pattern size on the soil properties and drilled shaft dimensions was investigated. Based on several analyses, a soil jug-shaped failure pattern around the tip of drilled shafts was proposed, and its dimensions were determined using the regression-based and trial and error... 

    Drilled shafts in sand: failure pattern and tip resistance using numerical and analytical approaches

    , Article International Journal of Geotechnical Engineering ; Volume 16, Issue 8 , 2022 , Pages 974-990 ; 19386362 (ISSN) Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Drilled shafts are one of the most important types of pile foundations. Several researchers have suggested different soil failure patterns for driven piles; however, for drilled shafts, this issue is inadequately addressed in the literature. In this paper, a numerical approach was pursued to obtain the location and dimensions of plastic zones around the tip of drilled shafts. The dependence of the suggested failure pattern size on the soil properties and drilled shaft dimensions was investigated. Based on several analyses, a soil jug-shaped failure pattern around the tip of drilled shafts was proposed, and its dimensions were determined using the regression-based and trial and error... 

    On the theoretical and molecular dynamic methods for natural frequencies of multilayer graphene nanosheets incorporating nonlocality and interlayer shear effects

    , Article Mechanics of Advanced Materials and Structures ; Volume 29, Issue 20 , 2022 , Pages 2873-2883 ; 15376494 (ISSN) Nikfar, M ; Taati, E ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, a multiplate nonlocal shear model and molecular dynamic simulations are presented to investigate the effects of interlayer shear and nonlocality on the natural frequencies of multilayer graphene sheets (MLGSs). From one aspect in the optimal design of such structures, the interaction between graphene layers, which can significantly vary the static and dynamic behavior due to lack of solidity of layers stack, should be considered. On the other hand, it is requied that the nonlocality phenomenon which has an effective role in the mechanical analysis of nanostructures is taken into account. To this aim, the equation of motion along with corresponding boundary conditions is... 

    Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 2 , 2022 , Pages 509-536 ; 15397734 (ISSN) Shokrgozar, A ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this study, a cylindrical microshell stability reinforced by graphene nanoplatelets is investigated while an axial load is applied uniformly. In addition, viscoelastic foundation covers the composite nanostructure. Therefore, the impacts of the small scale parameter are studied while nonlocal strain gradient theory (NSGT) is considered. The present research deals for the first time with the consideration of viscoelastic, strain–stress size-dependent parameters along with taking into account of various boundary conditions (BCs), especially C-F ones put into effect on the proposed theory. The governing equations (G.Eqs) and BCs have been obtained utilizing energy method and solved with... 

    Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

    , Article Mechanics Based Design of Structures and Machines ; 2020 Shokrgozar, A ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, a cylindrical microshell stability reinforced by graphene nanoplatelets is investigated while an axial load is applied uniformly. In addition, viscoelastic foundation covers the composite nanostructure. Therefore, the impacts of the small scale parameter are studied while nonlocal strain gradient theory (NSGT) is considered. The present research deals for the first time with the consideration of viscoelastic, strain–stress size-dependent parameters along with taking into account of various boundary conditions (BCs), especially C-F ones put into effect on the proposed theory. The governing equations (G.Eqs) and BCs have been obtained utilizing energy method and solved with... 

    Free vibration analysis of general stepped circular plates with internal elastic ring support resting on Winkler foundation by green function method

    , Article Mechanics Based Design of Structures and Machines ; Volume 44, Issue 3 , 2016 , Pages 212-230 ; 15397734 (ISSN) Ghannadiasl, A ; Mofid, M ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Natural frequencies are important dynamic characteristics of a structure. Therefore, the exact solution pertaining to free vibration of stepped circular plate elastically restrained against rotation, translation, and internal elastic ring support resting on an arbitrary variable elastic foundation using Green Function is presented in this paper. Thus, an accurate and direct modeling technique is introduced for modeling stepped circular plate on an arbitrary variable elastic foundation with arbitrary boundary conditions and internal elastic ring support. The effect of the translational along with rotational support flexibilities, as well as, the elastic coefficient of Winkler foundation and... 

    On the dynamic response of beams on elastic foundations with variable modulus

    , Article Acta Mechanica ; 2016 , Pages 549-564 ; 00015970 (ISSN) Foyouzat, M. A ; Mofid, M ; Akin, J. E ; Sharif University of Technology
    Springer-Verlag Wien 
    Abstract
    An exact solution is established pertaining to the dynamic response of an Euler–Bernoulli beam resting on a Winkler foundation with variable subgrade modulus. The solution is performed by employing the infinite power series method. Moreover, using the Frobenius theorem, the proposed method is extended in order to solve the problems wherein the variation of the modulus is not an analytic function. The solution procedure is demonstrated through several illustrative examples, and the correctness of the results has been ascertained through comparison with recognized solutions in the literature. Finally, it is shown that the proposed method of solution is directly applicable to the more general... 

    Multi-objective optimization of functionally graded materials, thickness and aspect ratio in micro-beams embedded in an elastic medium

    , Article Structural and Multidisciplinary Optimization ; Volume 58, Issue 1 , July , 2018 , Pages 265-285 ; 1615147X (ISSN) Taati, E ; Sina, N ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Optimal design of micron-scale beams as a general case is an important problem for development of micro-electromechanical devices. For various applications, the mechanical parameters such as mass, maximum deflection and stress, natural frequency and buckling load are considered in strategies of micro-manufacturing technologies. However, all parameters are not of equal importance in each operating condition but multi-objective optimization is able to select optimal states of micro-beams which have desirable performances in various micro-electromechanical devices. This paper provides optimal states of design variables including thickness, distribution parameter of functionally graded... 

    Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 5 , 2019 ; 16785878 (ISSN) Habibi, M ; Mohammadgholiha, M ; Safarpour, H ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this article, wave propagation characteristics of a size-dependent graphene nanoplatelet (GNP) reinforced composite cylindrical nanoshell coupled with piezoelectric actuator (PIAC) and surrounded with viscoelastic foundation is presented. The effects of small scale are analyzed based on nonlocal strain gradient theory (NSGT) which is an accurate theory employing exact length scale parameter and nonlocal constant. The governing equations of the GNP composite cylindrical nanoshell coupled with PIAC have been evolved using Hamilton’s principle and solved with assistance of the analytical method. For the first time in the current study, wave propagation electrical behavior of a GNP composite... 

    An intelligent computer method for vibration responses of the spinning multi-layer symmetric nanosystem using multi-physics modeling

    , Article Engineering with Computers ; 2021 ; 01770667 (ISSN) Guo, J ; Baharvand, A ; Tazeddinova, D ; Habibi, M ; Safarpour, H ; Roco Videla, A ; Selmi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    This article is the first attempt to employ deep learning to estimate the frequency performance of the rotating multi-layer nanodisks. The optimum values of the parameters involved in the mechanism of the fully connected neural network are determined through the momentum-based optimizer. The strength of the method applied in this survey comes from the high accuracy besides lower epochs needed to train the multi-layered network. It should be mentioned that the current nanostructure is modeled as a nanodisk on the viscoelastic substrate. Due to rotation, the centrifugal and Coriolis effects are considered. Hamilton’s principle and generalized differential quadrature method (GDQM) are presented... 

    An intelligent computer method for vibration responses of the spinning multi-layer symmetric nanosystem using multi-physics modeling

    , Article Engineering with Computers ; Volume 38 , 2022 , Pages 4217-4238 ; 01770667 (ISSN) Guo, J ; Baharvand, A ; Tazeddinova, D ; Habibi, M ; Safarpour, H ; Roco-Videla, A ; Selmi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    This article is the first attempt to employ deep learning to estimate the frequency performance of the rotating multi-layer nanodisks. The optimum values of the parameters involved in the mechanism of the fully connected neural network are determined through the momentum-based optimizer. The strength of the method applied in this survey comes from the high accuracy besides lower epochs needed to train the multi-layered network. It should be mentioned that the current nanostructure is modeled as a nanodisk on the viscoelastic substrate. Due to rotation, the centrifugal and Coriolis effects are considered. Hamilton’s principle and generalized differential quadrature method (GDQM) are presented... 

    Tracing distributed collaborative development in apache software foundation projects

    , Article Empirical Software Engineering ; 2016 , Pages 1-36 ; 13823256 (ISSN) Gharehyazie, M ; Filkov, V ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Developing and maintaining large software systems typically requires that developers collaborate on many tasks. During such collaborations, when multiple people work on the same chunk of code at the same time, they communicate with each other and employ safeguards in various ways. Recent studies have considered group co-development in OSS projects and found that it is an essential part of many projects. However, those studies were limited to groups of size two, i.e., pairs of developers. Here we go further and characterize co-development in larger groups. We develop an effective methodology for capturing distributed collaboration beyond groups of size two, based on synchronized commit...