Loading...
Search for: foundations
0.009 seconds
Total 220 records

    Study of Concrete Dam-Foundation-Reservoir-Sediment Layer Interaction by Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Roohezamin, Amirhossein (Author) ; Ghaemian, Mohsen (Supervisor)
    Abstract
    The exact modeling of a concrete dam system, which includes concrete dam body, foundation, reservoir and sediment layer, plays an important role in the analysis of the interaction between the concrete dam components. In this thesis, the interaction between the components of a concrete gravity dam system is studied by Finite element method. The interactions between these components are analyzed in time domain. In this thesis, we focus on the sediment layer and its impacts on the response of the dam. The sediment layer is modeled as a two phase medium. In order to study the effects of the sediment layer on the dam response, models with different heights and materials of the sediment layer are... 

    Laws of Nature in Van Frassen View

    , M.Sc. Thesis Sharif University of Technology Ansarian, Zeinab (Author) ; Akbari Takhtameshlou, Javad (Supervisor)
    Abstract
    The importance of the issue of laws of nature is obvious so that some say the purpose of science is discovering the laws of nature. In his “laws and symmetry” (1989) van Fraassen takes an antirealistic position toward the laws. His project is to clear science from metaphysics, and since the notion of laws of nature has heavy metaphysical presuppositions it should be eliminated from the literature of science. He tries to provide three kinds of arguments against the notion of laws: first, historical arguments, second, arguing in favor of insufficiency of all presented accounts of laws, and third, rejecting the tasks that accounts of laws should do. In van Frassen’s view, studies of science... 

    Study of the Dynamic Response of Foundation Resting on Sandy soil by Means of Physical Modeling

    , M.Sc. Thesis Sharif University of Technology Ghasemzade Mashhadi, Hossein (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    Experimental investigations in the subject of dynamic response of machine foundations for verification of many theoretical studies are scant. The effects of several factors, namely, shape and weight of foundation, frequency of vibration, depth of embedment, dynamic load levels and type of loading (harmonic and impact) on dynamic response of foundation were studied experimentally.Also, the current methods of machine foundation analysis mostly are based on the concept of the dynamic impedance function. Therefore, using these tests results, impedance functions for the model are calculated and presented. The physical model tests were carried out in a steel container with dimension of 1×1×0.9 m.... 

    Upgrading the Existing Methods for Seismic Evaluation of Soil-Structure Systems with Embedded Foundation

    , Ph.D. Dissertation Sharif University of Technology Jahankhah, Hossein (Author) ; Ghannad, Mohammad Ali (Supervisor)
    Abstract
    Base flexibility of structures, cause changes in seismic input motions to the structure, and hence, result in variations in structural seismic responses. This phenomenon is commonly referred to as soil-structure interaction (SSI). The effect of base flexibility on seismic responses is usually investigated from two main aspects: 1) Kinematic interaction (KI) , 2) Inertial Interaction (II). KI effects are induced, first, because of the stiffness contrast between the foundation and the flexible base, and second, because of phase difference of the receiving waves in the contact boundary between the foundation and the flexible base. These effects may results in variations in frequency content of... 

    The Effect of Vertical Excitation on the Response of Soil-Structure Systems Allowed to Uplift

    , M.Sc. Thesis Sharif University of Technology Monir Vaghefi, Zeinab (Author) ; Ghannad, Mohammad Ali (Supervisor)
    Abstract
    The simultaneous effect of uplift phenomenon and vertical vibration of soil-structure system is investigated in this study. The super-structure is modeled as an equivalent single-degree of freedom with bilinear behavior mounted on a rigid foundation resting on distributed tensionless Winkler springs and dampers. The effect of vertical excitation on the response of soil-structure systems allowed to uplift is investigated parametrically through time history analysis for a wide range of systems subjected to sine pulse and a group of ground motions recorded on the soil type of C. The results consist of maximum displacement of the uplifting system and ductility demand of the super-structure as a... 

    Exact solutions for free vibrations and buckling of double tapered columns with elastic foundation and tip mass

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 135, Issue 5 , 2013 ; 10489002 (ISSN) Firouz Abadi, R. D ; Rahmanian, M ; Amabili, M ; Sharif University of Technology
    2013
    Abstract
    The present study aims at the free vibration analysis of double tapered columns. Foundation is assumed to be elastic and the effects of self-weight and tip mass with significant moment of inertia are considered. The governing equation of motion is obtained using the Hamilton principle, based on both the Euler-Bernoulli and Timoshenko beam models. Applying the power series method of Frobenius, the base solutions of the governing equations are obtained in the form of a power series via general recursive relations. Applying the boundary conditions, the natural frequencies of the beam/column are obtained using both models. The obtained results are compared with literature and a very good... 

    Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method

    , Article Archive of Applied Mechanics ; Volume 83, Issue 2 , February , 2013 , Pages 177-191 ; 09391533 (ISSN) Fallah, A ; Aghdam, M. M ; Kargarnovin, M. H ; Sharif University of Technology
    2013
    Abstract
    Free vibration analysis of moderately thick rectangular FG plates on elastic foundation with various combinations of simply supported and clamped boundary conditions are studied. Winkler model is considered to describe the reaction of elastic foundation on the plate. Governing equations of motion are obtained based on the Mindlin plate theory. A semi-analytical solution is presented for the governing equations using the extended Kantorovich method together with infinite power series solution. Results are compared and validated with available results in the literature. Effects of elastic foundation, boundary conditions, material, and geometrical parameters on natural frequencies of the FG... 

    Exact 3-D solution for free bending vibration of thick FG plates and homogeneous plate coated by a single FG layer on elastic foundations

    , Article Journal of Solid Mechanics ; Volume 7, Issue 1 , 2015 , Pages 28-40 ; 20083505 (ISSN) Salehipour, H ; Hosseini, R ; Firoozbakhsh, K ; Sharif University of Technology
    Islamic Azad University  2015
    Abstract
    This paper presents new exact 3-D (three-dimensional) elasticity closed-form solutions for out-of-plane free vibration of thick rectangular single layered FG (functionally graded) plates and thick rectangular homogeneous plate coated by a functionally graded layer with simply supported boundary conditions. It is assumed that the plate is on a Winkler- Pasternak elastic foundation and elasticity modulus and mass density of the FG layer vary exponentially through the thickness of the FG layer, whereas Poisson's ratio is constant. In order to solve the equations of motion, a proposed displacement field is used for each layer. Influences of stiffness of the foundation, inhomogeneity of the FG... 

    Dynamic green function solution of beams under a moving load with different boundary conditions

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 273-279 ; 10263098 (ISSN) Mehri, B ; Davar, A ; Rahmani, O ; Sharif University of Technology
    2009
    Abstract
    This paper presents the linear dynamic response of uniform beams with different boundary conditions excited by a moving load, based on the Elder-Bernouli beam theory. Using a dynamic green function, effects of different boundary conditions, velocity of load and other parameters are. assessed and some of the numerical results are compared with those given in the. references. © Sharif University of Technology, June 2009  

    Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

    , Article Mechanics Based Design of Structures and Machines ; 2020 Shokrgozar, A ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, a cylindrical microshell stability reinforced by graphene nanoplatelets is investigated while an axial load is applied uniformly. In addition, viscoelastic foundation covers the composite nanostructure. Therefore, the impacts of the small scale parameter are studied while nonlocal strain gradient theory (NSGT) is considered. The present research deals for the first time with the consideration of viscoelastic, strain–stress size-dependent parameters along with taking into account of various boundary conditions (BCs), especially C-F ones put into effect on the proposed theory. The governing equations (G.Eqs) and BCs have been obtained utilizing energy method and solved with... 

    Effect of geometry and foundation conditions on the accuracy of the steady state seepage analysis results for rockfill dams

    , Article Scientia Iranica ; Volume 14, Issue 3 , 2007 , Pages 212-220 ; 10263098 (ISSN) Jafarzadeh, F ; Soleimanbeigi, A ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    One of the most important concerns in designing an embankment dam is seepage analysis. Conventional seepage analyses of embankment dams are performed in two-dimensional (2D) space, in which the impacts of water flow lines seeping from the side abutments are ignored. This fact is especially important if the dam is constructed in a narrow valley. In addition, if the effects of existing underlain faults in the reservoir water discharge rate, under different loading conditions, are to be scrutinized, three-dimensional (3D) modeling of the dam for seepage analysis is inevitable. In this paper, the significance of three-dimensional seepage analyses is emphasized by making a 3D model of a real dam... 

    Response of beams on nonlinear viscoelastic foundations to harmonic moving loads

    , Article Computers and Structures ; Volume 83, Issue 23-24 , 2005 , Pages 1865-1877 ; 00457949 (ISSN) Kargarnovin, M. H ; Younesian, D ; Thompson, D. J ; Jones, C. J. C ; Sharif University of Technology
    2005
    Abstract
    The response of infinite beams supported by nonlinear viscoelastic foundations subjected to harmonic moving loads is studied. A straightforward solution technique applicable in the frequency domain is presented in this paper. The governing equations are solved using a perturbation method in conjunction with complex Fourier transformation. A closed-formed solution is presented in an integral form based on the presented Green's function and the theorem of residues is used for the calculation of integrals. The solution is directed to compute the deflection and bending moment distribution along the length of the beam. A parametric study is carried out and influences of the load speed and... 

    Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 2 , 2022 , Pages 509-536 ; 15397734 (ISSN) Shokrgozar, A ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this study, a cylindrical microshell stability reinforced by graphene nanoplatelets is investigated while an axial load is applied uniformly. In addition, viscoelastic foundation covers the composite nanostructure. Therefore, the impacts of the small scale parameter are studied while nonlocal strain gradient theory (NSGT) is considered. The present research deals for the first time with the consideration of viscoelastic, strain–stress size-dependent parameters along with taking into account of various boundary conditions (BCs), especially C-F ones put into effect on the proposed theory. The governing equations (G.Eqs) and BCs have been obtained utilizing energy method and solved with... 

    Seismic Analysis of Concrete Gravity Dams Considering Layered Foundation Using Domain Reduction Method

    , Ph.D. Dissertation Sharif University of Technology Sotoudeh Foumani, Payam (Author) ; Ghaemian, Mohsen (Supervisor)
    Abstract
    Nowadays, due to advancements in technology and processing power, earthquake engineering is moving toward more realistic modeling of actual problems in different fronts. In the case of considering seismic waves for design and analysis of concrete dams, numerous challenges exists due to complex nature of the problem which have absorbed abundant attention from a number of researchers around the world. In recent studies about earthquake input mechanisms, accounting for true nature of the foundation and applied earthquake have been hot topics. Therefore, in this thesis, thorough investigation on these effective factors in dynamic analysis of concrete dams is performed.In the first part of this... 

    Inelastic displacement ratios for soil-structure systems allowed to uplift

    , Article Earthquake Engineering and Structural Dynamics ; Vol. 43, issue. 9 , July , 2014 , p. 1401-1421 ; ISSN: 00988847 Ghannad, M. A ; Jafarieh, A. H ; Sharif University of Technology
    Abstract
    The simultaneous effects of soil-structure interaction, foundation uplift and inelastic behavior of the superstructure on total displacement response of soil-structure systems are investigated. The superstructure is modeled as an equivalent single-degree-of-freedom system with bilinear behavior mounted on a rigid foundation resting on distributed tensionless Winkler springs and dampers. It is well known that the behavior of soil-structure systems can be well described using a limited number of nondimensional parameters. Here, by introducing two new parameters, the concept is extended to inelastic soil-structure systems in which the foundation is allowed to uplift. An extensive parametric... 

    Numerical study of ground vibration due to impact pile driving

    , Article Proceedings of the Institution of Civil Engineers: Geotechnical Engineering ; Vol. 167, issue. 1 , August , 2014 , p. 28-39 ; 13532618 Khoubani, A ; Ahmadi, M. M ; Sharif University of Technology
    Abstract
    Ground vibration due to pile driving is a long-lasting concern associated with the foundation construction industry. It is of great importance to estimate the level of vibration prior to the beginning of pile driving, to avoid structural damage, or disturbance of building occupants. In this study, an axisymmetric finite-element model that utilises an adaptive meshing algorithm has been introduced, using the commercial code Abaqus, to simulate full penetration of the pile from the ground surface to the desired depth by applying successive hammer impacts. The model has been verified by comparing the computed particle velocities with those measured in the field. The results indicate that the... 

    Nonlinear seismic response of concrete gravity dams due to foundation fault movement

    , Article Scientia Iranica ; Vol. 21, issue. 5 , 2014 , pp. 1539-1548 ; ISSN: 10263098 Ghaemian, M ; Vafai, A. H ; Karimi, Z ; Sharif University of Technology
    Abstract
    Not only should dams be evaluated for seismic shaking, but their capability to survive potential fault displacement in their foundations should also be assessed. Safety reviews of existing dams suggest that geological-seismic evaluation of some dam sites has failed to recognize the existence of possibly active faults. In this study, the nonlinear seismic behavior of concrete gravity dams, due to relative fault dislocation occurring in foundations, has been investigated. Two types of fault movement, including normal-slip and reverse-slip, have been considered. These two types, combined with the location of fault lines, with respect to the toe, middle, and heel of the dam base, angle of fault,... 

    Mechanical properties of steel fiber-reinforced concrete slab tracks on non-ballasted foundations

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1626-1636 ; 10263098 (ISSN) Madhkhan, M ; Entezam, A ; Torki, M. E ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Mechanical properties of slab tracks on a foundation with nonlinear stiffness are accounted for. At first, the cracking stages were inspected in FEM models, and it was learned that slab tracks have one-way exural behavior. Secondly, experimental full-scale models were made, and the accuracy of analyses was verified by comparing the FEM loadde ection curves with those of previous studies and validating the cracking and ultimate loads with those obtained from experiments. Finally, the effects of several parameters on the cracking and ultimate loads and the energy absorption of steel fiber-reinforced slab tracks were investigated by examining the real behavior of slab tracks on elastic... 

    Seismic responses of arch dams due to non-uniform ground motions

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1431-1436 ; 10263098 (ISSN) Ghaemian, M ; Sohrabi Gilani, M ; Sharif University of Technology
    2012
    Abstract
    In the present paper, spatially variation input effects on seismic responses of arch dams have been studied. Recorded ground accelerations at the dam foundation interface of Pacoima dam during January 13, 2001 were used for the purpose of this investigation. A numerical finite element model was developed for dynamic analysis of the dam reservoir system. The modified version of NSAD-DRI finite element program was used for the analysis and the ground acceleration time histories were interpolated at all dam foundation interface nodal points. Total and pseudo static displacements as well as developed stresses due to uniform and non uniform excitations are obtained. The results reveal that... 

    Spatial variation input effects on seismic response of arch dams

    , Article Scientia Iranica ; Volume 19, Issue 4 , August , 2012 , Pages 997-1004 ; 10263098 (ISSN) Sohrabi Gilani, M ; Ghaemian, M
    Elsevier  2012
    Abstract
    In the present paper, the seismic response of an arch dam subjected to spatial variation of ground motions along the interface with its foundations is investigated. Recorded ground accelerations at the dam foundation interface of an arch dam were used for the purpose of this investigation. Topographic amplification between various points of the interface was studied by obtaining ratios of the response spectral displacement and spectral pseudo acceleration. Time shift and amplification between stations show the nonuniform nature of ground motions for large structures like dams. Recorded ground accelerations were interpolated for different nodes of the finite element model. The seismic...