Loading...
Search for: fourier-transform-infrared-spectroscopy
0.01 seconds

    Biodiesel production from sunflower oil using k2co3 impregnated kaolin novel solid base catalyst

    , Article JAOCS, Journal of the American Oil Chemists' Society ; Volume 98, Issue 6 , 2021 , Pages 633-642 ; 0003021X (ISSN) Jalalmanesh, S ; Kazemeini, M ; Rahmani, M. H ; Zehtab Salmasi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel, effective, and economically heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were characterized through several analyses including the X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller specific surface area. These revealed the best catalyst for the investigated reaction among different ones prepared based upon various impregnation extent of the potassium carbonate. The influence of this parameter was examined through a... 

    Improved green biosynthesis of chitosan decorated Ag- and Co3O4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 32 , 2021 ; 15499634 (ISSN) Kiani, M ; Rabiee, N ; Bagherzadeh, M ; Ghadiri, A.M ; Fatahi, Y ; Dinarvand, R ; Webster, T. J ; Sharif University of Technology
    Elsevier Inc  2021
    Abstract
    AgNPs@Chitosan and Co3O4-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for Co3O4-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for Co3O4-NPs- and AgNPs@Chitosan against E. coli (24 h, 20 μg/mL), respectively. MTT assays showed up to 80% and 90%, 71% and 75%, and 91% and 94% mammalian cell viability for the green synthesized, chemically synthesized AgNPs and green synthesized AgNPs@Chitosan for HEK-293 and PC12 cells, respectively, and 70% and 71%, 59% and 62%, and 88% and 73% for the related Co3O4-NPs (24 h, 20 μg/mL). The photocatalytic activities showed dye degradation after 135 and 105 min for AgNPs@Chitosan and... 

    Influence of Y3+, Yb3+, Gd3+ cations on structural and electromagnetic properties of CuFe2O4 nanoferrites prepared via one step sol-gel method

    , Article Journal of Rare Earths ; Volume 39, Issue 10 , 2021 , Pages 1224-1231 ; 10020721 (ISSN) Kiran, A ; Akhtar, M. N ; Yousaf, M ; Batoo, K. M ; Aldossary, O. M ; Khan, S. N ; Sharif University of Technology
    Editorial Office of Chinese Rare Earths  2021
    Abstract
    Rare earths (REs) play a key role in distorting spinel structure by creating some defects at the lattice sites and make them suitable for magnetodielectric applications. In the present study, the nanoferrites of CuRE0.02Fe1.98O4, where REs = Y3+, Yb3+, Gd3+, were prepared using one step sol–gel method. The prepared samples are copper ferrite (CFO), yttrium doped copper ferrite (Y-CFO), ytterbium doped copper ferrite (Yb-CFO) and gadolinium doped copper ferrite (Gd-CFO), respectively. The single-phase structure of all the REs doped nanoferrites was determined by X-ray diffraction (XRD) analysis. The porosity, agglomerations and grain size of the REs doped copper ferrite were examined using... 

    An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light

    , Article Journal of Hazardous Materials ; Volume 413 , 2021 ; 03043894 (ISSN) Kohantorabi, M ; Giannakis, S ; Moussavi, G ; Bensimon, M ; Gholami, M. R ; Pulgarin, C ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, Ag nanoparticles were loaded on ZIF-67 covered by graphene oxide (Ag/ZIF-67@GO), and its catalytic performance was studied for the heterogeneous activation of peroxymonosulfate (PMS) under visible-light. The catalyst surface morphology and structure were analyzed by FT-IR, XRD, XPS, DRS, FE-SEM, EDX, TEM, BET, ICP-AES and TGA analysis. The efficacy of PMS activation by the Ag/ZIF-67@GO under visible light was assessed by phenol degradation and E. coli inactivation. Phenol was completely degraded within 30 min by HO•, SO4•− and O2•− generated through the photocatalytic PMS activation. In addition, total E. coli inactivation was attained in 15 min that confirmed the highly... 

    Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe2O4) nanoparticles

    , Article Ceramics International ; 2021 ; 02728842 (ISSN) Lu, Y ; Yousaf, M ; Akhtar, M. N ; Noor, A ; Akbar, M ; Shah, M. A. K. Y ; Yan, S ; Wang, F ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Rare earth oxides with a trivalent nature play a pivotal role in reinforcing the magneto-optical attributes of spinel ferrite nanoparticles by replacing Fe3+ ions. In this study, rare earth Gd oxide doped with CoFe2O4 NPs with a composition of Co1+xGdxFe2-2xO4 (x = 0, 0.05, 0.10, and 0.15) were synthesized using sol-gel auto-combustion. The outcome of Gd cations on the physical, magneto-optical and electrical characteristics of the cobalt ferrite NPs were reported. X-ray diffraction (XRD), and Fourier transform infrared (FTIR) investigations confirmed the single-phase cubic crystalline nature and metal ion stretching in the cobalt ferrite synthesized samples. Decreasing drift in the average... 

    Synthesis of CuCo2O4/BiVO4composites as promise and efficient catalysts for 4-nitrophenol reduction in water: Experimental and theoretical study

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 4 , 2021 ; 22133437 (ISSN) Mirzaee Valadi, F ; Gholami, M. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study investigates the synthesis of CuCo2O4, BiVO4, and CuCo2O4/BiVO4 nanocomposite by the solvothermal method. The Physico-chemical properties of the samples were verified through Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Transmission Electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET). Evaluation of catalytic efficiency of the synthesized samples were done in promoting the 4-Nitrophenol reduction to 4-Aminophenol in the existence of high amount of sodium borohydride (NaBH4) as a reducing agent, and the progress of the catalytic reaction was monitored... 

    Gellan gel comprising short PVDF based-nanofibers: The effect of piezoelectric nanofiber on the mechanical and electrical behavior

    , Article Materials Today Communications ; Volume 26 , 2021 ; 23524928 (ISSN) Mohseni, M ; Ramazani S. A., A ; H-Shirazi, F ; Hassanzadeh Nemati, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Gel-fiber structure with the potential of extracellular matrix (ECM) mimics can be introduced as a suitable candidate for bioengineering applications. In this study, piezoelectric gellan gel-fiber was prepared with incorporating poly(vinylidenefluoride) (PVDF)/glass-flake in the gellan matrix. Glass-flake nanoparticles were modified with silane group, PVDF/glass-flake nanofibers were synthesized and short-strand nanofibers were fabricated using the mechanical homogenizer method. Brunauer–Emmett–Teller (BET), Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) analyses were used for surface modification study, and scanning electron microscopy (SEM),... 

    Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies

    , Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 881-893 ; 01418130 (ISSN) Mohseni, M ; S. A., A. R ; H Shirazi, F ; Nemati, N. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite... 

    New insight into the filtration control of drilling fluids using a graphene-based nanocomposite under static and dynamic conditions

    , Article ACS Sustainable Chemistry and Engineering ; Volume 9, Issue 38 , 2021 , Pages 12844-12857 ; 21680485 (ISSN) Movahedi, H ; Jamshidi, S ; Hajipour, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    During oil and gas well drilling, the filtration control of bentonite water-based drilling fluids (BT-WBDFs), as an environmentally friendly fluid, is crucial to avoid formation damage and swelling shale problems. One of the most critical problems is undesirable changes in the rheology and filtration properties of the BT-WBDFs because of salt contamination. Herein, the potential of using both graphene oxide (GO) nanosheets and a graphene oxide-polyacrylamide (GO-PAM) nanocomposite is evaluated for controlling the filtration properties, especially in a salty medium. First, GO nanosheets were functionalized, and then the GO-PAM nanocomposite was synthesized using the solution polymerization... 

    Synthesis of a new self-supported Mgy(CuxNi0.6-xMn0.4)1-yFe2O4 oxygen carrier for chemical looping steam methane reforming process

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 37 , 2021 , Pages 19397-19420 ; 03603199 (ISSN) Nazari, M ; Soltanieh, M ; Heydarinasab, A ; Maddah, B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Novel self-supported Mgy(CuxNi0.6-xMn0.4)1-yFe2O4 with (y = 0, 0.05, 0.1, 0.15, and x = 0, 0.15, 0.3, 0.45, 0.6) oxygen carriers (OCs) are synthesized through the co-precipitation method. The synthesized OCs’ properties are characterized by X-ray powder diffraction (XRD), Raman spectra, transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and Thermogravimetric Analysis (TGA). The synthesized OCs are assessed in Chemical Looping Steam Methane Reforming (CL-SMR) process subject to different mesh sizes, reaction temperatures, Steam/Carbon... 

    Synthesis and optimization of CuxNi0.6-xMn0.4Fe2O4 oxygen carrier for chemical looping steam methane reforming

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; 2021 ; 15567036 (ISSN) Nazari, M ; Heydari Nasab, A ; Soltanieh, M ; Maddah, B ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The self-supported CuxNi0.6-xMn0.4Fe2O4 oxygen carrier (x = 0.1–0.5) is synthesized to be applied in the chemical looping steam methane reforming (CL-SMR) process through the synthesized co-precipitation method. The response surface methodology (RSM) based on the Box–Behnken model is adopted to evaluate the effects of independent variables on the functionality of responses as well as predicting the best response volume. In this method, the variables consisting of reaction temperature (550–700°C), oxygen carrier (OC) loading percentage (0.1–0.5), steam-to-CH4 ratio (S/C), (1.5–3.5), and redox cycles’ count (10–24) and the responses consisting of hydrogen (H2) production yield, CH4 conversion... 

    Porphyrin molecules decorated on metal–organic frameworks for multi-functional biomedical applications

    , Article Biomolecules ; Volume 11, Issue 11 , 2021 ; 2218273X (ISSN) Rabiee, N ; Rabiee, M ; Sojdeh, S ; Fatahi, Y ; Dinarvand, R ; Safarkhani, M ; Ahmadi, S ; Daneshgar, H ; Radmanesh, F ; Maghsoudi, S ; Bagherzadeh, M ; Varma, R. S ; Mostafavi, E ; Sharif University of Technology
    MDPI  2021
    Abstract
    Metal–organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin’ nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical... 

    Fabrication and characterization of an injectable reinforced composite scaffold for cartilage tissue engineering: An in vitro study

    , Article Biomedical Materials (Bristol) ; Volume 16, Issue 4 , 2021 ; 17486041 (ISSN) Khozaei Ravari, M ; Mashayekhan, S ; Zarei, F ; Sayyahpour, F. A ; Taghiyar, L ; Eslaminejad, M. B ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    There are limitations in current medications of articular cartilage injuries. Although injectable bioactive hydrogels are promising options, they have decreased biomechanical performance. Researchers should consider many factors when providing solutions to overcome these challenges. In this study, we created an injectable composite hydrogel from chitosan and human acellular cartilage extracellular matrix (ECM) particles. In order to enhance its mechanical properties, we reinforced this hydrogel with microporous microspheres composed of the same materials as the structural building blocks of the scaffold. Articular cartilage from human donors was decellularized by a combination of physical,... 

    Selection of desired bentonite and evaluating influence of different acids on preparation of special clay for removal of trace olefins from aromatics

    , Article Clay Minerals ; 2021 ; 00098558 (ISSN) Rouhani, H ; Farhadi, F ; Kenari, M. A ; Eskandari, E ; Ramakrishna, S ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    Activated clay is an inexpensive substance with massive utilization for removal of unsaturated compounds on an industrial scale. The performance of activated clay in removing such compounds heavily relies on the type of pristine raw clay and acids which are used during the activation process. In this work, olefins removal from aromatic streams is reported by activated clays with two different routes of clay activation. After preliminary tests of four different natural clays, the best clay was selected due to having enhanced swelling index, cation exchange capacity, higher surface area, and better suspension stability, among others. Having activated clay with hydrochloric acid and sulfuric... 

    Supported deep eutectic liquid membranes with highly selective interaction sites for efficient CO2 separation

    , Article Journal of Molecular Liquids ; Volume 342 , 2021 ; 01677322 (ISSN) Saeed, U ; Khan, A. L ; Gilani, M. A ; Bilad, M. R ; Khan, A. U ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This study demonstrates a new strategy in which deep eutectic solvents (DES), a new class of sustainable organic solvents, were impregnated into micro porous polymer support for separation of CO2 from CH4. Three different types of DESs were prepared by mixing and subsequent heating of betaine as hydrogen bond acceptor (HBA) in combination with either glycerol (G), ethylene glycol (EG) or urea (U) as hydrogen bond donors (HBD) in 1:3 stoichiometric mole ratio. The Fourier transform infrared (FTIR) spectroscopy was performed to confirm the formation of DESs. The gas permeation results showed that permeability of CO2 increased from 31.23 to 35.67 Barrer on substitution of HBD from glycerol to... 

    Supported liquid membranes comprising of choline chloride based deep eutectic solvents for CO2 capture: Influence of organic acids as hydrogen bond donor

    , Article Journal of Molecular Liquids ; Volume 335 , 2021 ; 01677322 (ISSN) Saeed, U ; Laeeq Khan, A ; Amjad Gilani, M ; Roil Bilad, M ; Ullah Khan, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This study focuses on a forward looking approach in which deep eutectic solvents (DESs), a new class of designer solvents, were impregnated into micro porous polyvinylidene fluoride (PVDF) membrane for the separation of CO2 from CH4. Three types of DESs were prepared by mixing and heating of hydrogen bond acceptor (choline chloride) with either malic acid, tartaric acid or oxalic acid as hydrogen bond donor. The Fourier transform infrared spectroscopy confirmed the hydrogen bond interactions in the resulting DES. Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability of the prepared membranes. The DES based supported liquid membranes were investigated systematically to... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Mesoporous nanostructures of NiCo-LDH/ZnCo2O4 as an efficient electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 604 , 2021 , Pages 832-843 ; 00219797 (ISSN) Shamloofard, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Increasing energy demands for pollution-free and renewable energy technologies have stimulated intense research on the development of inexpensive, highly efficient, and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this study, a superior OER performance was achieved using a tri-metallic (Zn, Co, Ni) high-performance electrocatalyst. We successfully fabricated a peony-flower-like hierarchical ZnCo2O4 through an additive-free hydrothermal reaction followed by heat treatment. Then NiCo-LDH (layered double hydroxides) nano-flakes was electrodeposited on the ZnCo2O4/GCE surface to prepare NiCo-LDH/ZnCo2O4/GCE which was used as electrode for OER. The structure and... 

    Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions

    , Article Nanoscale ; Volume 13, Issue 41 , 2021 , Pages 17576-17591 ; 20403364 (ISSN) Shamloofard, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Although important advances have been acquired in the field of electrocatalysis, the design and fabrication of highly efficient and stable non-noble earth-abundant metal catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remain a significant challenge. In this study, we have designed a superior bifunctional catalyst for OER and HER in alkaline media based on the Co-Mo-P/Zn-Co-S multicomponent heterostructure. The as-prepared multicomponent heterostructure was successfully obtained via a simple three-step hydrothermal-sulfidation-electrodeposition process consisting of star-like Co-Zn-S covered with Co-Mo-P. The structure and morphology evaluation of the... 

    Enhancement in reactivity via sulfidation of FeNi@BC for efficient removal of trichloroethylene: Insight mechanism and the role of reactive oxygen species

    , Article Science of the Total Environment ; Volume 794 , 2021 ; 00489697 (ISSN) Shan, A ; Idrees, A ; Zaman, W. Q ; Abbas, Z ; Farooq, U ; Ali, M ; Yang, R ; Zeng, G ; Danish, M ; Gu, X ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel catalyst of sulfidated iron-nickel supported on biochar (S-FeNi@BC) was synthesized to activate persulfate (PS) for the removal of trichloroethylene (TCE). A number of techniques including XRD, SEM, TEM, FTIR, BET and EDS were employed to characterize S-FeNi@BC. The influence of sulfur to iron ratio (S/F) on TCE removal was investigated by batch experiments and a higher TCE removal (98.4%) was achieved at 0.22/1 ratio of S/F in the PS/S-FeNi@BC oxidation system. A dominant role in iron species conversion was noticed by the addition of sulfur in FeNi@BC system. Significant enhancement in recycling of the dissolved and surface Fe(II) was confirmed which contributed to the generation of...