Loading...
Search for: fourier-transform-infrared-spectroscopy
0.019 seconds

    Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells

    , Article Materials Science and Engineering C ; Volume 55 , 2015 , Pages 482-489 ; 09284931 (ISSN) Hatamie, S ; Akhavan, O ; Sadrnezhaad, S. K ; Ahadian, M. M ; Shirolkar, M. M ; Wang, H. Q ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Curcumin (as a natural reductant material) was utilized for green reduction and functionalization of chemically exfoliated graphene oxide (GO) sheets. The π-π attachment of the curcumin molecules onto the curcumin-reduced graphene oxide (rGO) sheets was confirmed by Raman and Fourier transform infrared spectroscopies. Zeta potential of the GO sheets decreased from about - 40 mV to - 20 mV, after the green reduction and functionalization. The probable cytotoxicity of the curcumin-rGO sheets was studied through their interactions with two human breast cancer cell lines (MDA-MB-231 and SKBR3 cell lines) and a normal cell line (mouse fibroblast L929 cell line). The curcumin-rGO sheet with... 

    Curcumin incorporated PVA-borax dual delivery hydrogels as potential wound dressing materials—Correlation between viscoelastic properties and curcumin release rate

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 45 , 2018 ; 00218995 (ISSN) Rezvan, G ; Pircheraghi, G ; Bagheri, R ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Poly(vinyl alcohol) (PVA) is a biocompatible polymer which can be physically crosslinked by Borax to form hydrogel. PVA-Borax (PB) hydrogel is a promising candidate for drug delivery system. Therefore, it is necessary to find the quantitative relationship between drug release rate and network structure of PB hydrogels to predict and control drug release rate. In this work, at first step the optimum ratio of Borax: PVA was determined by studying the interactions between PVA chains and Borax molecules by means of Fourier transform infrared spectroscopy, while viscoelastic properties of prepared PB hydrogels were measured in the oscillatory shear flow field. In the following, curcumin as a... 

    Covalently immobilized laccase onto graphene oxide nanosheets: Preparation, characterization, and biodegradation of azo dyes in colored wastewater

    , Article Journal of Molecular Liquids ; Volume 276 , 2019 , Pages 153-162 ; 01677322 (ISSN) Kashefi, S ; Borghei, S. M ; Mahmoodi, N. M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, graphene oxide (GO) was synthesized via modified Hummer's method and exploited as an ideal enzyme immobilization support due to its exclusive chemical and structural features. Then, laccase from genetically modified Aspergillus was covalently immobilized onto GO (nanobiocatalyst). Enzymatic characterization of the nanobiocatalyst exhibited promising results: laccase loading of 156.5 mg g−1 and immobilization yield of 64.6% at laccase concentration of 0.9 mg/ mL. Further employment of various structural characterization techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), Thermo-Gravimetric... 

    Corrosion resistance and photocatalytic activity evaluation of electrophoretically deposited TiO 2 -rGO nanocomposite on 316L stainless steel substrate

    , Article Ceramics International ; Volume 45, Issue 11 , 2019 , Pages 13747-13760 ; 02728842 (ISSN) Azadeh, M ; Parvizy, S ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    TiO 2 -rGO nanocomposite coatings were obtained by electrophoretic deposition (EPD) technique of TiO 2 nanoparticles and graphene oxide (GO) on stainless steel substrate. First, GO particles were synthesized using a modified Hummers' method. GO was reduced electrochemically to form a coating in the presence of nano-sized TiO 2 particles. The influences of different parameters such as GO concentration, coupling co-electro-deposition parameters (electrophoretic duration and voltage) on thickness, surface morphology and, corrosion behavior of the as-synthesized TiO 2 -rGO nanocomposite coatings were systematically surveyed. The morphology and microstructure were investigated by field emission... 

    Corrosion protection of 1050 aluminium alloy using a smart self-cleaning TiO2-CNT coating

    , Article Surface and Coatings Technology ; Volume 275 , 2015 , Pages 224-231 ; 02578972 (ISSN) Shadravan, A ; Sadeghian, Z ; Nemati, A ; Mohammadi, S. P ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Inclusion of carbon nanotubes (CNTs) into the titanium dioxide coating on 1050 aluminium alloy was studied with the aim at enhancing the corrosion resistance of the surface. Composite coatings with various contents of CNTs were prepared via the sol-gel method and dip coating. XRD and FTIR phase and structural evaluations showed the presence of anatase phase in all thin films. Concomitant enhanced corrosion behaviour in the presence of CNTs was resulted from polarization potentiodynamic test. Band-gap evaluation was performed using absorbance spectra of coatings and showed considerable decrease of band-gap energy in the presence of CNTs. Photocatalytic properties and hydrophilicity of... 

    Core-shell γ-Fe2O3/SiO2/PCA/Ag-NPs hybrid nanomaterials as a new candidate for future cancer therapy

    , Article International Journal of Nanoscience ; Vol. 13, issue. 1 , February , 2014 Soleyman, R ; Pourjavadi, A ; Masoud, N ; Varamesh, A ; Sharif University of Technology
    Abstract
    In the current study, γ-Fe2O3/SiO 2/PCA/Ag-NPs hybrid nanomaterials were successfully synthesized and characterized. At first, prepared γ-Fe2O3 core nanoparticles were modified by SiO2 layer. Then they were covered by poly citric acid (PCA) via melting esterification method as well. PCA shell acts as an effective linker, and provides vacancies for conveying drugs. Moreover, this shell as an effective capping agent directs synthesis of silver nanoparticles (Ag-NPs) via in situ photo-reduction of silver ions by sunlight-UV irradiation. This system has several benefits as a suitable cancer therapy nanomaterial. Magnetic nanoparticles (MNPs) can guide Ag-NPs and drugs to cancer cells and then... 

    Copper(ii) ions supported on functionalized graphene oxide: an organometallic nanocatalyst for oxidative amination of azolesviaC-H/C-N bond activation

    , Article New Journal of Chemistry ; Volume 45, Issue 6 , 2021 , Pages 3242-3251 ; 11440546 (ISSN) Behzadi, M ; Mahmoodi Hashemi, M ; Roknizadeh, M ; Nasiri, S ; Ramazani Saadatabadi, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Graphene oxide (GO) was chemically modified withpara-aminobenzoic acid (PABA) to immobilize copper(ii) ions on its surface and used as a nanocatalyst for the oxidative C(sp2)-H bond amination reaction. A practical method to prepare Cu2+supported onpara-aminobenzoic acid grafted on GO was reported. The prepared Cu2+@GO/PABA was characterized by FT-IR, XRD, SEM, AFM, TEM, UV-Vis, and ICP techniques. The results showed that the morphology, distribution, and loading of copper ions could be well-adjusted by grafting of PABA on GO. Moreover, just 2 mol% of Cu2+@GO-PABA could catalyze the C-H activation reaction of benzoxazole and benzothiazole with secondary amines in >94% yields. Also, the... 

    Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors

    , Article Bioactive Materials ; Volume 11 , 2022 , Pages 107-117 ; 2452199X (ISSN) Khodaei, A ; Jahanmard, F ; Madaah Hosseini, H. R ; Bagheri, R ; Dabbagh, A ; Weinans, H ; Amin Yavari, S ; Sharif University of Technology
    KeAi Communications Co  2022
    Abstract
    Systemic chemotherapy has lost its position to treat cancer over the past years mainly due to drug resistance, side effects, and limited survival ratio. Among a plethora of local drug delivery systems to solve this issue, the combinatorial strategy of chemo-hyperthermia has recently received attention. Herein we developed a magneto-thermal nanocarrier consisted of superparamagnetic iron oxide nanoparticles (SPIONs) coated by a blend formulation of a three-block copolymer Pluronic F127 and F68 on the oleic acid (OA) in which Curcumin as a natural and chemical anti-cancer agent was loaded. The subsequent nanocarrier SPION@OA-F127/F68-Cur was designed with a controlled gelation temperature of... 

    Controlled microwave-assisted synthesis of ZnFe 2 O 4 nanoparticles and their catalytic activity for O-acylation of alcohol and phenol in acetic anhydride

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1597-1600 ; 10263098 (ISSN) Matloubi Moghaddam, F ; Doulabi, M ; Saeidian, H ; Sharif University of Technology
    2012
    Abstract
    ZnFe2O4 nanoparticles have been successfully prepared through a controlled microwave-assisted co-precipitation. X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) were used for the structural, morphological and magnetic investigation of the product. SEM micrographs of ZnFe2O4 nanopowder also reveal that nanoparticles have spherical shape. Average particle size was obtained as 12 nm from XRD. Catalytic activity of ZnFe2O4 nanopowder for O-acylation of alcohol and phenol has been investigated. A trace amount of ZnFe2O4 has been effectively used as a nanocatalyst for the acylation of alcohol and... 

    Controlled electrophoretic deposition of electrochemically exfoliated graphene sheets on Ag nanowires network

    , Article Micro and Nano Letters ; Volume 14, Issue 4 , 2019 , Pages 389-393 ; 17500443 (ISSN) Malekshahi Byranvand, M ; Tajabadi, F ; Mardi, S ; Taghavinia, N ; Amiri Zarand, A ; Dabirian, A ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    Electrochemical exfoliation of graphite has recently attracted a big attention as a simple, fast and scalable method for the preparation of high quality graphene, but there are some drawbacks that hinder its application. Direct deposition is one of the most critical challenges that makes it difficult to deposit uniform, compact and large scale graphene thin films. This work develops a facile electrophoretic deposition route to fabricate exfoliated graphene (EG) film on Ag nanowires (NWs) networks with a controllable film thickness in nanometers scale. EG thin films are deposited with different applied potentials and times from an EG dispersion in N, N-dimethylformamide solvent. Since... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Content evaluation of different waste PCBs to enhance basic metals recycling

    , Article Resources, Conservation and Recycling ; Volume 139 , 2018 , Pages 298-306 ; 09213449 (ISSN) Arshadi, M ; Yaghmaei, S ; Mousavi, S. M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This research aims to expand the body of information that researchers require before starting electronic waste (E-waste) recovery experiments. With this purpose, the basic metal contents, alkalinity, polymer components, iron magnetic separation, metal recovery priority and economic values of different types of waste printed circuit boards (PCBs) were investigated. The selected wastes were computer PCBs (CPCBs), CPCBs with wires, mobile phone PCBs (MPPCBs), television PCBs (TVPCBs), fax machine PCBs (FPCBs), copy machine PCBs (COPCBs) and central processing units (CPUs). These E-wastes were prepared in the three fraction sizes of F1<1 mm, 1 < F2<3 mm, and 3 < F3<8 mm to evaluate the metal... 

    Comparison of kinetic biodegradation of potato starch based and corn starch based low density polyethylene compound in aerated sludge

    , Article BioTechnology: An Indian Journal ; Volume 7, Issue 5 , 2013 , Pages 163-168 ; 09747435 (ISSN) Borghei, M ; Khoramnejadian, S ; Hejazi, B ; Sharif University of Technology
    2013
    Abstract
    The biodegradability rates of two different kinds of polyethylene bonded with corn and potato starch are studied in this paper. While it is usual to use soil as the environment for biodegradation, an aerated sludge tank was used in this studywhich offers a richermicrobialmediumand increases the rate of biodegradation. The biodegradability is determined by two ways: first, comparing differences in the weight change of two samples, one placed inside distilled water and the other placed in aerated sludge tank. Second test for biodegradation is by examination of FTIR spectroscopy. Through FTIR spectroscopy, the biodegradability rate and reduction in some of the existing bonds in polymer before... 

    Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite

    , Article Biosensors and Bioelectronics ; Volume 151 , 2020 Ahmadi, N ; Bagherzadeh, M ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, titania-ceria-graphene quantum dot (TC-GQD) nanocomposite was synthesized by hydrothermal method for the first time. The prepared nanomaterials were characterized by XRD, FTIR dynamic light scattering (DLS), FESEM, HRTEM, and EDX spectroscopy along with elemental mapping. The synergistic effect of the nanocomposite components was studied by diffuse reflectance spectroscopy (DRS) and electrical conductivity meter. The results showed that band gap of TC-GQD nanocomposite was shifted to visible lights relative to its components (1.3 eV), and electrical conductivity of the sample was significant increased to 89.5 μS cm−1. After chemical and physical characterization, prepared new... 

    Co-microencapsulation of lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites

    , Article Carbohydrate Polymers ; Volume 199 , 2018 , Pages 266-275 ; 01448617 (ISSN) Vaziri, A. S ; Alemzadeh, I ; Vossoughi, M ; Chackoshian Khorasani, A ; Sharif University of Technology
    Abstract
    The aim of this study was to investigate the co-microencapsulation of Lactobacillus plantarum and DHA-rich oil in a novel gastrointestinal-resistant biocomposite composed of alginate, pectin and gelatin. The optimal biocomposite consisted of 1.06% alginate, 0.55% pectin and 0.39% gelatin showed 88.66% survivability of the microencapsulated cells compared to the free cells (50.36%). In addition, co-microencapsule containing probiotic and DHA fatty acid was synthesized and physicochemically analyzed using SEM, FTIR, TGA, XRD. The results from SEM clearly confirmed that cells were completely entrapped in the matrix and DHA increased smoothness and compactness of the surface of the particles.... 

    Combustion synthesis of g-C3N4/Fe2O3 nanocomposite for superior photoelectrochemical catalytic performance

    , Article Applied Surface Science ; Volume 534 , 2020 Ghane, N ; Sadrnezhaad, S. K ; Hosseini H., S. M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The g-C3N4/Fe2O3 nanocomposite was produced by the solution combustion synthesis (SCS) of iron-nitrate/g-C3N4 mixtures of varying concentration ratios and using urea as a fuel. The following methods did characterization of the products: X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller investigation (BET), ultraviolet–visible light analysis (UV–vis) and photoluminescence measurement (PL). Effect of iron nitrate on stability and photocurrent density under simulated visible-light irradiation was determined. The... 

    Combinatorial screening of nanoclay-reinforced hydrogels: a glimpse of the "holy grail" in orthopedic stem cell therapy?

    , Article ACS Applied Materials and Interfaces ; Volume 10, Issue 41 , 2018 , Pages 34924-34941 ; 19448244 (ISSN) Hasany, M ; Thakur, A ; Taebnia, N ; Kadumudi, F. B ; Shahbazi, M. A ; Pierchala, M. K ; Mohanty, S ; Orive, G ; Andresen, T. L ; Foldager, C. B ; Yaghmaei, S ; Arpanaei, A ; Gaharwar, A. K ; Mehrali, M ; Dolatshahi Pirouz, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Despite the promise of hydrogel-based stem cell therapies in orthopedics, a significant need still exists for the development of injectable microenvironments capable of utilizing the regenerative potential of donor cells. Indeed, the quest for biomaterials that can direct stem cells into bone without the need of external factors has been the "Holy Grail" in orthopedic stem cell therapy for decades. To address this challenge, we have utilized a combinatorial approach to screen over 63 nanoengineered hydrogels made from alginate, hyaluronic acid, and two-dimensional nanoclays. Out of these combinations, we have identified a biomaterial that can promote osteogenesis in the absence of... 

    Column study of Cr (VI) adsorption onto modified silica-polyacrylamide microspheres composite

    , Article Chemical Engineering Journal ; Volume 210 , 2012 , Pages 280-288 ; 13858947 (ISSN) Karimi, M ; Shojaei, A ; Nematollahzadeh, A ; Abdekhodaie, M. J ; Sharif University of Technology
    2012
    Abstract
    Adsorption of Cr (VI) from aqueous solution was studied using a continuous fixed bed column which is packed with a new micro-porous composite particle developed in this study. This composite particle is composed of silica porous particle in which acrylamide is polymerized within the pore regions of the silica particles. The composite particle was supposed to maintain the mechanical properties of polyacrylamide as efficient absorbent to serve appropriately in the continuous processes. In order to enhance the adsorption capacity of the composite particle, it was modified with ethylenediamine. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR) and... 

    Colloidal stability of dextran and dextran/poly ethylene glycol coated TiO2 nanoparticles by hydrothermal assisted sol-gel method

    , Article Ceramics International ; Volume 39, Issue 7 , 2013 , Pages 8377-8384 ; 02728842 (ISSN) Naghibi, S ; Madaah Hosseini, H. R ; Faghihi Sani, M. A ; Sharif University of Technology
    2013
    Abstract
    Colloidal stability of dextran (Dex) and Dex/poly ethylene glycol (PEG) coated TiO2 nanoparticles (NPs) were investigated. The particles were successfully synthesized by a hydrothermal assisted sol-gel technique. The results of Ultraviolet-visible (UV-vis) spectrophotometry showed that Dex and PEG additions during hydrothermal process (HTP) led to the formation of long-term (more than 60 days) stable colloids, while the addition of dispersants after HTP did not have a significant impact on the colloidal stability of NPs. X-ray diffraction (XRD) and selected area electron diffraction (SAED) analyses proved that PEG and/or Dex coated NPs had less crystallinity than the plain TiO2. Fourier... 

    Collagen-based highly porous hydrogel without any porogen: Synthesis and characteristics

    , Article European Polymer Journal ; Volume 43, Issue 3 , 2007 , Pages 877-889 ; 00143057 (ISSN) Pourjavadi, A ; Kurdtabar, M ; Sharif University of Technology
    2007
    Abstract
    In this contribution we have developed a collagen-based highly porous hydrogel by neutralizing the grafted poly(acrylamide-co-acrylic acid) after gel formation. Preparation of the hydrogels involved free radical polymerization of a combination of hydrolyzed collagen, acrylic acid (AA), acrylamide (AAm) and distilled water, in appropriate amounts and contained a crosslinking agent called N,N′-methylene bisacrylamide (MBA). The chemical structure of the hydrogels was characterized by means of FTIR spectroscopy, DSC and TGA thermal methods. Morphology of the samples was examined by scanning electron microscopy (SEM). Systematically, the certain variables of the graft copolymerization were...