Loading...
Search for: galerkin-methods
0.008 seconds
Total 203 records

    Nonlinear aeroelastic response of slender wings based on Wagner function

    , Article Thin-Walled Structures ; Volume 46, Issue 11 , 2008 , Pages 1192-1203 ; 02638231 (ISSN) Shams, Sh ; Sadr Lahidjani, M. H ; Haddadpour, H ; Sharif University of Technology
    2008
    Abstract
    This paper presents a method for nonlinear aeroelastic analysis of Human Powered Aircraft (HPA) wings. In this type of aircraft there is a long, highly flexible wing. Wing flexibility, coupled with long wing span can lead to large deflections during normal flight operation; therefore, a wing in vertical and torsional motion using the second-order form of nonlinear general flexible Euler-Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic theory based on Wagner function is used for determination of aerodynamic loading on the wing. Combining these two types of formulations yields the nonlinear integro-differentials aeroelastic equations. Using the Galerkin's... 

    A combination of MADM and genetic algorithm for optimal DG allocation in power systems

    , Article 42nd International Universities Power Engineering Conference, UPEC 2007, Brighton, 4 September 2007 through 6 September 2007 ; 2007 , Pages 1031-1035 ; 1905593368 (ISBN); 9781905593361 (ISBN) Kamalinia, S ; Afsharnia, S ; Khodayar, M. E ; Rahimikian, A ; Sharbafi, M. A ; Sharif University of Technology
    2007
    Abstract
    Distributed Generation (DG) can help in reducing the cost of electricity to the customer, relieve network congestion, provide environmentally friendly energy close to load centers as well as promote system technical characteristics such as loss reduction, voltage profile enhancement, reserve mitigation and many other factors. Furthermore, its capacity is also scalable and it can provide voltage support at distribution level. The planning studies include penetration level and placement evaluation which are influenced directly by DG type. Most of the previous publications in this field chose one or two preferred parameter as basic objective and implement the optimizations in systems. But due... 

    Supersonic flutter prediction of functionally graded conical shells

    , Article Composite Structures ; Volume 92, Issue 2 , 2010 , Pages 377-386 ; 02638223 (ISSN) Mahmoudkhani, S ; Haddadpour, H ; Navazi, H.M ; Sharif University of Technology
    2010
    Abstract
    Aero-thermoelastic analysis of a simply supported functionally graded truncated conical shell subjected to supersonic air flow is performed to predict the flutter boundaries. The temperature-dependent properties of the FG shell are assumed to be graded through the thickness according to a simple rule of mixture and power-law function of volume fractions of material constituents. Through the thickness steady-state heat conduction is considered for thermal analysis. To perform the stability analysis, the general nonlinear equations of motion are first derived using the classical Love's shell theory and the von Karman-Donnell-type of kinematic nonlinearity together with the linearized...