Loading...
Search for: galerkin-methods
0.005 seconds
Total 203 records

    Nonlinear flutter of three dimensional general laminated composite plates

    , Article 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Waikiki, HI, 23 April 2007 through 26 April 2007 ; Volume 8 , 2007 , Pages 7518-7529 ; 02734508 (ISSN); 1563478927 (ISBN); 9781563478925 (ISBN) Kouchakzadeh, M. A ; Rasekh, M ; Guran, A ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    The nonlinear aeroelastic behavior of a three-dimensional general laminated composite plate at high supersonic Mach numbers is investigated using von Karman's large deflection plate theory and quasisteady aerodynamic theory. Galerkin's method is used to reduce the governing equations to a system of nonlinear ordinary differential equations in time, which are then solved by a direct numerical integration method. Nonlinear flutter results are presented with the effects of in-plane force, static pressure differential, fiber orientation and aerodynamic damping  

    Closed form solutions for the motion of electrically excited micro-cantilever beams

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 1096665X (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Ghaemi Oskouei, S. B ; Ahmadian, M. T ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    The differential equation governing the motion of an electrically excited capacitive microcantilever beam is a nonlinear PDE [1]. Accurate analysis about its motion is of great importance in MEMS' dynamical response. In this paper first the nonlinear 4th order 2 point boundary value problem (ODE) governing the static deflection of the system is solved using three methods. 1. The nonlinear part is linearized and its exact solution is obtained. 2. For low applied DC voltages (not near pull-in) the solutin is found using the direct straight forward perturbation analysis. 3. Numerical computer solutions which are used for the previous solution's verifications. The next parts are devoted to the... 

    Compatible numerical schemes for coupled flow and transport in porous media

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Zade, A. Q ; Manzari, M. T ; Hannani, S. K ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    In this paper, the compatibility of various combinations of numerical schemes for the solution of flow and transport equations in porous media is studied and the possible loss of accuracy and global mass conservation are investigated. Here, the flow equations are solved using three popular finite element methods including the Standard Galerkin (SG), Discontinuous Galerkin (DG) and Mixed Finite Element (MFE) methods among which only the DG method possesses the local conservation property. Besides, the transport of a scalar variable which is governed by a convection-diffusion equation is studied in conjunction with the flow equations. The transport equation is solved using both the Streamline... 

    Ring microgyroscope modeling and performance evaluation

    , Article JVC/Journal of Vibration and Control ; Volume 12, Issue 5 , 2006 , Pages 537-553 ; 10775463 (ISSN) Esmaeili, M ; Durali, M ; Jalili, N ; Sharif University of Technology
    2006
    Abstract
    This paper discusses the effects of substrate motions on the performance of microgyroscopes modeled as ring structures. Using the Extended Hamiltonian Principle, the equations of motion of a ring micro-gyroscope are derived, and the natural frequency equation and response characteristics are extracted in closed form for the case where the substrate undergoes normal rotation. The Galerkin approximation is then used to arrive at the ordinary differential equations of motion for the ring. In these equations, the effects of angular, centripetal and Coriolis accelerations are all apparent. The response of the system to different inputs is studied and the system sensitivity to variation in input... 

    Ring microgyroscope modeling and performance evaluation

    , Article 2005 ASME International Mecahnical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 7 MEMS , 2005 , Pages 241-247 ; 1096665X (ISSN); 079184224X (ISBN); 9780791842249 (ISBN) Esmaeili, M ; Durali, M ; Jalili, N ; Sharif University of Technology
    2005
    Abstract
    This paper discusses the effects of substrate motions on the performance of a microgyroscope modeled as a ring structure. Using Extended Hamilton's Principle, the equations of motion are derived. The natural frequency equation and response of gyroscope are then extracted in closed-form for the case where substrate undergoes normal rotation. The Galerkin approximation is used for discretizing the partial differential equations of motion into ordinary differential equations. In these equations, the effects of angular accelerations, centripetal and coriolis accelerations are well apparent. The response of the system to different inputs is studied and the system sensitivity to input parameter... 

    Analysis of fluid flow and heat transfer in microchannels using combined pressure gradient and electroosmotic pumping

    , Article 3rd International Conference on Microchannels and Minichannels, ICMM2005, Toronto, ON, 13 June 2005 through 15 June 2005 ; Volume PART A , 2005 , Pages 503-510 ; 0791841855 (ISBN) Monazarami, R ; Zade, A. Q ; Manzari, M. T ; Sharif University of Technology
    2005
    Abstract
    A numerical model has been developed for studying the flow and heat transfer characteristics of single phase liquid flow through a microchannel. In this work the heat transfer characteristics of pressure driven and electroosmotic flow through microchannels have been studied. The governing equations are the Poisson-Boltzmann and Navier-Stokes equations which have been solved numerically using the standard Galerkin and the Mixed 4-1 finite element methods, respectively. Finally the energy equation is solved numerically using the Stream-wise Upwind Petrov Galerkin (SUPG) method. Two dimensional Poisson-Boltzmann equation was first solved to find the electric potential field and net charge... 

    Passive control of vibration of elastically supported beams subjected to moving loads

    , Article DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, 24 September 2005 through 28 September 2005 ; Volume 1 A , 2005 , Pages 153-158 ; 0791847381 (ISBN); 9780791847381 (ISBN) Younesian, D ; Esmailzadeh, E ; Kargarnovin, M. H ; Sharif University of Technology
    American Society of Mechanical Engineers  2005
    Abstract
    Vibration suppression of elastically supported beams subjected to moving loads is investigated in this work. For a Timoshenko beam with an arbitrary number of elastic supports, subjected to a constant axial compressive force, and having a tuned mass damper (TMD) installed at the mid-span, the equations of motion are derived and using the Galerkin approach the solution is sought. The optimum values of the frequency and damping ratio are determined both analytically and numerically and presented as some design curves directly applicable in the TMD design for bridge structures. To show the efficiency of the designed TMD, computer simulation for two real bridges, subjected to a S.K. S Japanese... 

    Dynamic modeling and performance evaluation of a vibrating cantilever beam microgyroscope

    , Article DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, 24 September 2005 through 28 September 2005 ; Volume 1 A , 2005 , Pages 137-144 ; 0791847381 (ISBN); 9780791847381 (ISBN) Esmaeili, M ; Durali, M ; Jalili, N ; Sharif University of Technology
    American Society of Mechanical Engineers  2005
    Abstract
    This paper discusses the effects of substrate motions on the performance of microgyroscopes modeled as suspended beams with a tip mass. The substrate movements can be motions along as well as rotations around the three axes. Using Extended Hamiltonian Principle and Galerkin approximation, the equations of the motion of the beam are analytically derived. In these equations, the effects of beam distributed mass, tip mass, angular accelerations, centripetal and coriolis accelerations are clearly apparent. The effect of electrostatic forces inducing the excitation vibrations are considered as linear functions of beam displacement. The response of the system to different inputs is studied and the... 

    Dynamic analysis of electrostatically actuated nanobeam based on strain gradient theory

    , Article International Journal of Structural Stability and Dynamics ; Volume 15, Issue 4 , 2014 ; ISSN: 02194554 Miandoab, E. M ; Pishkenari, H. N ; Yousefi Koma, A ; Sharif University of Technology
    Abstract
    In this study, dynamic response of a micro- and nanobeams under electrostatic actuation is investigated using strain gradient theory. To solve the governing sixth-order partial differential equation, mode shapes and natural frequencies of beam using Euler–Bernoulli and strain gradient theories are derived and then compared with classical theory. Galerkin projection is utilized to convert the partial differential equation to ordinary differential equations representing the system mode shapes. Accuracy of proposed one degree of freedom model is verified by comparing the dynamic response of the electrostatically actuated micro-beam with analogue equation and differential quadrature methods.... 

    A coupled hydro-mechanical analysis for prediction of hydraulic fracture propagation in saturated porous media using EFG mesh-less method

    , Article Computers and Geotechnics ; Vol. 55, issue , January , 2014 , p. 254-266 Oliaei, M. N ; Pak, A ; Soga, K ; Sharif University of Technology
    Abstract
    The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin... 

    Thermomechanical behaviours of strip and work-rolls in cold rolling process

    , Article Journal of Strain Analysis for Engineering Design ; Volume 46, Issue 8 , June , 2011 , Pages 794-804 ; 03093247 (ISSN) Koohbor, B ; Serajzadeh, S ; Sharif University of Technology
    2011
    Abstract
    A finite element analysis was developed to determine thermomechanical behaviours of strip and work-roll during cold rolling process under practical rolling conditions. The velocity field was first obtained using a rigid-plastic finite element formulation and then it was used to assess the strain and stress distributions within the strip and at the same time, a thermal finite element model based on streamline upwind Petrov-Galerkin scheme was employed to predict temperature distribution within the metal being rolled. In the next stage, the predicted temperature and stress fields at the contact region of strip/work-roll were employed as the boundary conditions to evaluate the thermomechanical... 

    The henry problem: New semianalytical solution for velocity-dependent dispersion

    , Article Water Resources Research ; Volume 52, Issue 9 , 2016 , Pages 7382-7407 ; 00431397 (ISSN) Fahs, M ; Ataie Ashtiani, B ; Younes, A ; Simmons, C. T ; Ackerer, P ; Sharif University of Technology
    Blackwell Publishing Ltd  2016
    Abstract
    A new semianalytical solution is developed for the velocity-dependent dispersion Henry problem using the Fourier-Galerkin method (FG). The integral arising from the velocity-dependent dispersion term is evaluated numerically using an accurate technique based on an adaptive scheme. Numerical integration and nonlinear dependence of the dispersion on the velocity render the semianalytical solution impractical. To alleviate this issue and to obtain the solution at affordable computational cost, a robust implementation for solving the nonlinear system arising from the FG method is developed. It allows for reducing the number of attempts of the iterative procedure and the computational cost by... 

    A three-dimensional mesh-free model for analyzing multi-phase flow in deforming porous media

    , Article Meccanica ; Volume 51, Issue 3 , 2016 , Pages 517-536 ; 00256455 (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Fully coupled flow-deformation analysis of deformable multiphase porous media saturated by several immiscible fluids has attracted the attention of researchers in widely different fields of engineering. This paper presents a new numerical tool to simulate the complicated process of two-phase fluid flow through deforming porous materials using a mesh-free technique, called element-free Galerkin (EFG) method. The numerical treatment of the governing partial differential equations involving the equilibrium and continuity equations of pore fluids is based on Galerkin’s weighted residual approach and employing the penalty method to introduce the essential boundary conditions into the weak forms.... 

    Semianalytical solutions for contaminant transport under variable velocity field in a coastal aquifer

    , Article Journal of Hydrology ; Volume 560 , 2018 , Pages 434-450 ; 00221694 (ISSN) Koohbor, B ; Fahs, M ; Ataie Ashtiani, B ; Simmons, C. T ; Younes, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of... 

    Element free galerkin mesh-less method for fully coupled analysis of a consolidation process

    , Article Scientia Iranica ; Volume 16, Issue 1 A , 2009 , Pages 65-77 ; 10263098 (ISSN) Oliaei, M. N ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    A formulation of the Element Free Galerkin (EFG), one of the mesh-less methods, is developed for solving coupled problems and its validity for application to soil-water problems is examined through numerical analysis. The numerical approach is constructed to solve, two governing partial differential equations of equilibrium and the. continuity of pore water, simultaneously. Spatial variables in a weak form, the displacement increment and excess pore, water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used to create the discretization of the... 

    A plate on winkler foundation with variable coefficient

    , Article Scientia Iranica ; Volume 16, Issue 3 , 2009 , Pages 249-255 ; 10263098 (ISSN) Mofid, M ; Noroozi, M ; Sharif University of Technology
    2009
    Abstract
    Plates on elastic foundations have attracted the attention of many researchers. Some elementary models have been introduced to consider interactions between the plate and its foundation. Other improved models have been proposed to develop basic models. In this work, a model based on the Winkler-foundation theory is proposed, while the constant parameter of Winkler is assumed to be variable; such as non-uniform springs with the functionality of the domain position, along with the plate and beam span in order to consider the non-uniform behavior of the foundation. The governing equation on the system is solved by using the Galerkin method and effects such as the presence of rigid points in the... 

    Some numerical issues using element-free galerkin mesh-less method for coupled hydro-mechanical problems

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 33, Issue 7 , 2009 , Pages 915-938 ; 03639061 (ISSN) Oliaei, M. N ; Soga, K ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    A new formulation of the element-free Galerkin (EFG) method is developed for solving coupled hydromechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the... 

    A Petrov-Galerkin finite element method using polyfractonomials to solve stochastic fractional differential equations

    , Article Applied Numerical Mathematics ; Volume 169 , 2021 , Pages 64-86 ; 01689274 (ISSN) Abedini, N ; Foroush Bastani, A ; Zohouri Zangeneh, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this paper, we are concerned with existence, uniqueness and numerical approximation of the solution process to an initial value problem for stochastic fractional differential equation of Riemann-Liouville type. We propose and analyze a Petrov-Galerkin finite element method based on fractional (non-polynomial) Jacobi polyfractonomials as basis and test functions. Error estimates in L2 norm are derived and numerical experiments are provided to validate the theoretical results. As an illustrative application, we generate sample paths of the Riemann-Liouville fractional Brownian motion which is of importance in many applications ranging from geophysics to traffic flow in telecommunication... 

    A Petrov-Galerkin finite element method using polyfractonomials to solve stochastic fractional differential equations

    , Article Applied Numerical Mathematics ; Volume 169 , 2021 , Pages 64-86 ; 01689274 (ISSN) Abedini, N ; Foroush Bastani, A ; Zohouri Zangeneh, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this paper, we are concerned with existence, uniqueness and numerical approximation of the solution process to an initial value problem for stochastic fractional differential equation of Riemann-Liouville type. We propose and analyze a Petrov-Galerkin finite element method based on fractional (non-polynomial) Jacobi polyfractonomials as basis and test functions. Error estimates in L2 norm are derived and numerical experiments are provided to validate the theoretical results. As an illustrative application, we generate sample paths of the Riemann-Liouville fractional Brownian motion which is of importance in many applications ranging from geophysics to traffic flow in telecommunication... 

    Flexural-Torsional Buckling Analysis of Thin- walled Composite Beams with Symmetric Layup

    , M.Sc. Thesis Sharif University of Technology Sadrzadeh, Mohammad Hossein (Author) ; Haddadpour , Hassan (Supervisor)
    Abstract
    In the present work, the buckling behavior of a composite beam with circular, rectangular and pentagonal cross sections is investigated. The structural model is based on the first order shear deformation theory (FSDT) and incorporates other non-classical effects such as primary and secondary warpings and restrained warping. The linear buckling equations are derived from the non-linear governing equations of motion and their associated boundary conditions and solved using the Galerkin method for a composite beam with the clamped-free end condition and the special layup configuration of Circumferentially Asymmetric Stiffness (CAS) which induces elastic couplings between torsional and flexural...