Loading...
Search for: galerkin-methods
0.009 seconds
Total 203 records

    Curvilinear fiber optimization tools for design thin walled beams

    , Article Thin-Walled Structures ; Volume 49, Issue 3 , 2011 , Pages 448-454 ; 02638231 (ISSN) Zamani, Z ; Haddadpour, H ; Ghazavi, M. R ; Sharif University of Technology
    Abstract
    An investigation of the possible performance improvements of thin walled composite beams through the use of the variable stiffness concept with curvilinear fiber is presented. The beams are constructed from a single-cell closed cross section and a number of non-classical effects such as material anisotropy, transverse shear, warping inhibition and nonuniform torsional model are considered in the beam model. The governing equations were derived by means of the extended Hamilton's principle. Also the extended Galerkin's method is used to solve governing equations. Composite beams subjected to different loading with given geometry and material properties are optimized for maximum failure load.... 

    Robust control of an autonomous four-wire electronically-coupled distributed generation unit

    , Article IEEE Transactions on Power Delivery ; Volume 26, Issue 1 , September , 2011 , Pages 455-466 ; 08858977 (ISSN) Karimi, H ; Yazdani, A ; Iravani, R ; Sharif University of Technology
    2011
    Abstract
    This paper proposes a control strategy for the autonomous (islanded) operation of a four-wire, electronically-coupled distributed generation (DG) unit which can feed a highly unbalanced load, e.g., due to the presence of single-phase loads. In the grid-connected mode, the power-electronic interface of the DG unit enables the exchange of real and reactive power with the distribution network, based on the conventional dq-frame current control strategy. The current control scheme is disabled subsequent to the detection of an islanding event, and the proposed controller is activated. The proposed control strategy utilizes: i) an internal oscillator to maintain the island frequency and ii) a... 

    Control of vibration amplitude, frequency and damping of an electrostatically actuated microbeam using capacitive, inductive and resistive elements

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 263-270 ; 9780791844472 (ISBN) Pasharavesh, A ; Alizadeh Vaghasloo, Y ; Fallah, A ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    In this study vibration amplitude, frequency and damping of a microbeam is controlled using a RLC block containing a capacitor, resistor and inductor in series with the microbeam. Applying this method all of the considerable characteristics of the oscillatory system can be determined and controlled with no change in the geometrical and physical characteristics of the microbeam. Euler-Bernoulli assumptions are made for the microbeam and the electrical current through the microbeam is computed by considering the microbeam deflection and its voltage. Considering the RLC block, the voltage difference between the microbeam and the substrate is calculated. Two coupled nonlinear partial... 

    An investigation on effects of traveling mass with variable velocity on nonlinear dynamic response of an inclined Timoshenko beam with different boundary conditions

    , Article International Journal of Mechanical Sciences ; Volume 52, Issue 12 , 2010 , Pages 1694-1708 ; 00207403 (ISSN) Mamandi, A ; Kargarnovin, M. H ; Farsi, S ; Sharif University of Technology
    2010
    Abstract
    In this paper, the nonlinear dynamic response of an inclined Timoshenko beam with different boundary conditions subjected to a traveling mass with variable velocity is investigated. The nonlinear coupled partial differential equations of motion for the bending rotation of cross-section, longitudinal and transverse displacements are derived using Hamilton's principle. These nonlinear coupled PDEs are solved by applying Galerkin's method to obtain dynamic response of the beam under the act of a moving mass. The appropriate parametric studies by taking into account the effects of the magnitude of the traveling mass, the velocity of the traveling mass with a constant acceleration/ deceleration... 

    A novel optimal distribution system planning framework implementing distributed generation in a deregulated electricity market

    , Article Electric Power Systems Research ; Volume 80, Issue 7 , July , 2010 , Pages 828-837 ; 03787796 (ISSN) Porkar, S ; Poure, P ; Abbaspour Tehrani fard, A ; Saadate, S ; Sharif University of Technology
    2010
    Abstract
    This paper introduces a new framework included mathematical model and a new software package interfacing two powerful softwares (MATLAB and GAMS) for obtaining the optimal distributed generation (DG) capacity sizing and sitting investments with capability to simulate large distribution system planning. The proposed optimization model allows minimizing total system planning costs for DG investment, DG operation and maintenance, purchase of power by the distribution companies (DISCOs) from transmission companies (TRANSCOs) and system power losses. The proposed model provides not only the DG size and site but also the new market price as well. Three different cases depending on system... 

    Transmission congestion management using distributed generation considering load uncertainty

    , Article Asia-Pacific Power and Energy Engineering Conference, APPEEC, 28 March 2010 through 31 March 2010 ; March , 2010 ; 21574839 (ISSN) ; 9781424448135 (ISBN) Afkousi Paqaleh, M ; Noory, A. R ; Abbaspour T. F., A ; Rashidinejad, M ; Sharif University of Technology
    2010
    Abstract
    This Paper presents a model for optimal locating and sizing of Distributed Generation (DG) for congestion management in deregulated electricity market. For reducing the solution space a priority list of candidate buses is formed and then optimal placement and sizing of DG in potential buses is discussed. In order to incorporate stochastic nature of power system in this study, Monte-Carlo method is used to simulate the effect of uncertainty of loads and system on the optimal location and size of the DGs in the network. The proposed method is applied to IEEE Reliability Test System (RTS). The impacts of load uncertainty on optimum DG size and location are studied  

    3D neutron diffusion computational code based on GFEM with unstructured tetrahedron elements: A comparative study for linear and quadratic approximations

    , Article Progress in Nuclear Energy ; Volume 92 , 2016 , Pages 119-132 ; 01491970 (ISSN) Hosseini, S. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In the present study, the comparison between the results obtained from the linear and quadratic approximations of the Galerkin Finite Element Method (GFEM) for neutronic reactor core calculation was reported. The sensitivity analysis of the calculated neutron multiplication factor, neutron flux and power distributions in the reactor core vs. the number of the unstructured tetrahedron elements and order of the considered shape function was performed. The cost of the performed calculation using linear and quadratic approximation was compared through the calculation of the FOM. The neutronic core calculation was performed for both rectangular and hexagonal geometries. Both the criticality and... 

    Analytical study of three-dimensional flexural vibration of micro-rotating shafts with eccentricity utilizing the strain gradient theory

    , Article Meccanica ; Volume 51, Issue 6 , 2016 , Pages 1435-1444 ; 00256455 (ISSN) Hashemi, M ; Asghari, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    In this work, some vibrational response parameters of strain gradient based micro-spinning Rayleigh beams with mass eccentricity distribution are investigated within infinitesimal deformation conditions. Governing equations of motion are derived utilizing the Hamilton’s principle. The gyroscopic effects and rotary inertia are both included in the formulation. By applying the Galerkin method, analytical expressions for natural frequencies of the micro beam in forward and backward whirl motions are obtained. In addition, an expression for the vibrational amplitude of the micro-beam due to mass eccentricity distribution is determined. Some numerical results are presented to study the effect of... 

    Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures, part 1: equations and formulation

    , Article Journal of Thermal Stresses ; Volume 40, Issue 11 , 2017 , Pages 1386-1401 ; 01495739 (ISSN) Entezari, A ; Filippi, M ; Carrera, E ; Sharif University of Technology
    Abstract
    An innovative 1D finite element (FE) approach is developed to analyze the 3D static, transient, and dynamic problems in the coupled and uncoupled thermoelasticity for the nonhomogeneous anisotropic materials. The Galerkin method is directly applied to the governing equations to obtain a weak formulation of the thermoelasticity problems with arbitrary loads and boundary conditions. To surmount the restrictions of the classical beam theories, a 1D FE procedure is proposed in the context of the Carrera Unified Formulation (CUF). Since coupled thermoelastic analyses are computationally demanding, the proposed 1D FE approach can be used as a powerful means to simulate the generalized coupled... 

    On the size-dependent flexural vibration characteristics of unbalanced couple stress-based micro-spinning beams

    , Article Mechanics Based Design of Structures and Machines ; Volume 45, Issue 1 , 2017 , Pages 1-11 ; 15397734 (ISSN) Hashemi, M ; Asghari, M ; Sharif University of Technology
    Abstract
    On the basis of the modified couple stress theory, some analytical results are obtained for vibrational parameters of micro-spinning Rayleigh beams with an axial mass-eccentricity distribution. The modified couple stress theory is a nonclassical continuum theory capable to capture the size effects in small-scale structures. After writing the governing equations of motion, they are transformed to the complex form. Then by utilizing the Galerkin method, analytical expressions for natural frequencies of the micro-spinning beam in forward and backward whirl motions are obtained. Critical speeds are also analytically presented in the two whirl motions for different modes. Moreover, the... 

    Stability analysis of generally laminated conical shells with variable thickness under axial compression

    , Article Mechanics of Advanced Materials and Structures ; 2018 ; 15376494 (ISSN) Kazemi, M. E ; Kouchakzadeh, M. A ; Shakouri, M ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The buckling of generally laminated conical shells having thickness variations under axial compression is investigated. This problem usually arises in the filament wound conical shells where the thickness changes through the length of the cone. The thickness may be assumed to change linearly through the length of the cone. The fundamental relations for a conical shell with variable thickness applying thin-walled shallow shell theory of Donnell-type and theorem of minimum potential energy have been derived. Nonlinear terms of Donnell equations are linearized by the use of adjacent-equilibrium criterion. Governing equations are solved using power series method. This procedure enables us to... 

    Parameter study of nonlinear aero-thermoelastic behavior of functionally graded plates

    , Article International Journal of Structural Stability and Dynamics ; Volume 9, Issue 2 , 2009 , Pages 285-305 ; 02194554 (ISSN) Mohammad Navazi, H ; Haddadpour, H ; Sharif University of Technology
    2009
    Abstract
    In this paper, the effects of different parameters on the nonlinear aeroelastic behavior of functionally graded flat plates are investigated. Considering the through-the-thickness continuous variation of the material properties, a combination of the simple rule of mixtures and the Mori-Tanaka scheme is used for estimating the effective properties at each point. The von-Karman large strains and the piston theory are used to model the structural nonlinearity and aerodynamic loading, respectively. By Hamilton's principle the governing nonlinear partial differential equations of motion are derived and then converted to a set of nonlinear ordinary differential equations using the Galerkin method.... 

    Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity

    , Article Journal of Thermal Stresses ; Volume 43, Issue 4 , 2020 , Pages 401-420 Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This paper deals with the small-scale effects on the thermoelastic damping (TED) in microplates. The coupled equations of motion and heat conduction are provided utilizing the strain gradient theory (SGT) and the dual-phase-lag (DPL) heat conduction model. Solving these equations and adopting the Galerkin method, the real and imaginary parts of frequency are extracted. The complex frequency approach is then employed to present a size-dependent expression for evaluating TED in thin plates. An analytical expression for TED incorporating small-scale effects is also derived on the basis of the energy dissipation approach. To survey the effect of different continuum theories on TED, the results... 

    Vibrations and stability analysis of double current-carrying strips interacting with magnetic field

    , Article Acta Mechanica ; 2020 Hosseinian, A. R ; Firouz Abadi, R. D ; Sharif University of Technology
    Springer  2020
    Abstract
    Interactive vibrations and buckling of double current-carrying strips (DCCS) are investigated in this study. Considering the rotational and transverse deformation of the strip, four coupled equations of motion are obtained using Hamilton’s principle. Using the Galerkin method, mass and stiffness matrices are extracted and the stability of the system is determined by solving the eigenvalue problem. Effects of pretension and elevated temperature on the stability of DCCS are studied for three types of materials and various arrangements. Finally, the effect of horizontal or vertical distance between strips on the critical current value is investigated. According to the results, the effects of... 

    Stability analysis of generally laminated conical shells with variable thickness under axial compression

    , Article Mechanics of Advanced Materials and Structures ; Volume 27, Issue 16 , 2020 , Pages 1373-1386 Kazemi, M. E ; Kouchakzadeh, M. A ; Shakouri, M ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    The buckling of generally laminated conical shells having thickness variations under axial compression is investigated. This problem usually arises in the filament wound conical shells where the thickness changes through the length of the cone. The thickness may be assumed to change linearly through the length of the cone. The fundamental relations for a conical shell with variable thickness applying thin-walled shallow shell theory of Donnell-type and theorem of minimum potential energy have been derived. Nonlinear terms of Donnell equations are linearized by the use of adjacent-equilibrium criterion. Governing equations are solved using power series method. This procedure enables us to... 

    Multi objective distributed generation planning using a binary particle swarm optimization method

    , Article 2008 International Conference on Genetic and Evolutionary Methods, GEM 2008, Las Vegas, NV, 14 July 2008 through 17 July 2008 ; 2008 , Pages 140-146 ; 1601320698 (ISBN); 9781601320698 (ISBN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    2008
    Abstract
    With the introduction of restructuring concepts to traditional power systems, a great deal of attention is given to utilization of distributed generation. Integration of DG units has been known as an alternative for distribution network reinforcement and purchasing energy from transmission network. Considering these facts, in the planning procedure of DG, determination of optimal sizing and sitting is a very important issue. This work presents a comprehensive framework for integration of distributed generations into a distribution network, regarding various technical and economical issues such as reduction of active power losses, environmental pollutions, investment and running costs while... 

    Reliability assessment of distribution system with distributed generation

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; January , 2008 , Pages 1551-1556 ; 9781424424054 (ISBN) Jahangiri, P ; Fotuhi Firuzabad, M ; Sharif University of Technology
    2008
    Abstract
    Reliability assessment is of primary importance in designing and planning distribution systems that operate in an economical manner with minimal interruption of customer loads. Distributed generation (DG) is expected to play an increasing role in emerging power systems because they use different type of resources and technologies to serve energy to power systems. DG is expected to improve the system reliability as its backup generation. Since DG units are subject to failures as all other generation units, the random behavior of these units must be taken into account in the analysis. Existence of DG units in a distribution system will effect on restoration time of load points. In this paper,... 

    Application of scheduling models for utility management of process plants and its extension to DG networks

    , Article 2008 1st International Conference on Infrastructure Systems and Services: Building Networks for a Brighter Future, INFRA 2008, Rotterdam, 10 November 2008 through 12 November 2008 ; 2008 ; 9781424468874 (ISBN) Behdani, B ; Pishvaie, M. R ; Sharif University of Technology
    2008
    Abstract
    Scheduling models are one of the main parts of computer-aided process design research in recent years. One of the novel applications of scheduling models is their usage for in-site utility management of a process plant. It is very common for huge process plants to provide their utility by themselves; therefore, they shall make decision on utility supply and demand simultaneously. This approach can be extended to other similar systems such as distributed generation networks. In fact, it is possible to consider a DG unit as an autonomous system which is responsible for its energy (heat and power) supply and demand. Of course, for achieving its reliability and dispatchability goals, it would... 

    Supersonic flutter prediction of functionally graded cylindrical shells

    , Article Composite Structures ; Volume 83, Issue 4 , 2008 , Pages 391-398 ; 02638223 (ISSN) Haddadpour, H ; Mahmoudkhani, S ; Navazi, H. M ; Sharif University of Technology
    2008
    Abstract
    The supersonic flutter analysis of simply supported FG cylindrical shell for different sets of in-plane boundary conditions is performed. The aeroelastic equations of motion are constructed using Love's shell theory and von Karman-Donnell-type of kinematic nonlinearity coupled with linearized first-order potential (piston) theory. The material properties are assumed to be temperature-dependant and graded across the thickness of the shell according to a simple power law. The temperature distribution is assumed to vary in the thickness direction and is obtained by solving the steady-state heat conduction equation. The pre-stresses due to the thermal and mechanical loadings are obtained by... 

    Vibration analysis of a composite Timoshenko beam with actuating layers under motion of a uniformlly traveling partially disributed mass

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 9 PART C , 2008 , Pages 1933-1942 ; 0791843033 (ISBN); 9780791843031 (ISBN) Ahmadian, M. T ; Pirbodaghi, T ; Paak, M ; Hassanpour, S ; Sharif University of Technology
    2008
    Abstract
    In this paper, a thorough investigation of response of a composite Timoshenko simply-supported beam with actuating layers, under the motion of a partially distributed mass is studied and a control system based on the feedback of beam's deflection velocity is applied to alleviate and suppress the vibration of the beam in either case when the mass is still traveling on the beam or departed the beam. The actuating layers are made up of Terfenol-D smart material which are sensitive to magnetic field (magnetostrictive materials) and this trait makes them very suitable to be used for vibration control. They introduce damping to the system through which the energy of system dissipates. The response...