Loading...
Search for: gas-condensates
0.007 seconds
Total 48 records

    Optimal distribution function determination for plus fraction splitting

    , Article Canadian Journal of Chemical Engineering ; Volume 97, Issue 10 , 2019 , Pages 2752-2764 ; 00084034 (ISSN) Foroughi, S ; Khoozan, D ; Jamshidi, S ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    Reservoir fluid modelling is one of the most important steps in reservoir simulation and modelling of flow lines as well as surface facilities. One of the most uncertain parameters of the reservoir fluids is the plus fraction. An accurate and consistent splitting scheme can reduce this uncertainty and as a result, enhance the modelling of reservoir fluids. The existing schemes for splitting plus fractions are all based on assuming a specific mole fraction-molecular weight distribution with predefined constant values that may yield inaccurate and inconsistent results. In this study, an optimization-based algorithm was developed to determine the aforementioned controlling parameters of the... 

    On the size-dependent behavior of drop contact angle in wettability alteration of reservoir rocks to preferentially gas wetting using nanofluid

    , Article Journal of Petroleum Science and Engineering ; Volume 178 , 2019 , Pages 1143-1154 ; 09204105 (ISSN) Azadi Tabar, M ; Ghazanfari, M. H ; Dehghan Monfared, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Wettability alteration of rock surfaces toward gas wetting have been recognized as a practical approach for maximizing the production from the gas condensate reservoirs. Most of the reported work in this area applied the so called sessile drop contact angle measurement technique to examine the change in wetting state of a surface. However, the size-dependent wetting behavior of drop which could affect the exact determination of wettability and wettability changes was not well discussed in the previous studies. Therefore, in this work, the size dependency of contact angle for four different liquid-solid-gas systems; i.e., water-calcite-air, water-treated calcite-air (nanofluid treated... 

    Pressure and rate transient modeling of multi fractured horizontal wells in shale gas condensate reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 185 , 2020 Dahim, S ; Taghavinejad, A ; Razghandi, M ; Rahimi Rigi, H ; Moeini, K ; Jamshidi, S ; Sharifi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Gas condensate production using technology of multi-stage hydraulically fracturing in shale gas condensate reservoirs' horizontal wells is a new topic of unconventional resources studies. Thus, shale gas condensate as a new source of energy can be considered as an important issue for development and further studies. In this work, a semi-analytical solution of gas and oil two-phase flow is presented for pressure transient analysis (PTA) and rate transient analysis (RTA) of a shale gas condensate reservoir's production data. Fluid flow assumption here is flow in a pseudo triple-porosity porous media, which are matrix, natural fractures and adsorbed gas. Adsorbed gas is a form of gas in porous... 

    Modeling relative permeability of gas condensate reservoirs: Advanced computational frameworks

    , Article Journal of Petroleum Science and Engineering ; Volume 189 , June , 2020 Mahdaviara, M ; Menad, N. A ; Ghazanfari, M. H ; Hemmati Sarapardeh, A ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    In the last years, an appreciable effort has been directed toward developing empirical models to link the relative permeability of gas condensate reservoirs to the interfacial tension and velocity as well as saturation. However, these models suffer from non-universality and uncertainties in setting the tuning parameters. In order to alleviate the aforesaid infirmities in this study, comprehensive modeling was carried out by employing numerous smart computer-aided algorithms including Support Vector Regression (SVR), Least Square Support Vector Machine (LSSVM), Extreme Learning Machine (ELM), Multilayer Perceptron (MLP), Group Method of Data Handling (GMDH), and Gene Expression Programming... 

    Experimental analysis and characterization of high-purity aluminum nanoparticles (Al-Nps) by electromagnetic levitation gas condensation (ELGC)

    , Article Nanomaterials ; Volume 10, Issue 10 , 2020 , Pages 1-15 Sabouni Tabari, R ; Halali, M ; Javadi, A. A ; Khanjanpour, M. H ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    The production of high-purity aluminum nanoparticles (Al-NPs) is challenging due to the highly reactive nature of Al metals. Electromagnetic levitation gas condensation (ELGC) is a promising method to produce high-purity metallic particles as it avoids the interaction between molten metal and refractory-lined, which guarantees the removal of impurities such as oxygen (O). In this research, high-purity Al-NPs were successfully fabricated via ELGC process and fully characterized. The effects of power input and gas flow rate on particle size and distribution were analyzed using field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and dynamic light... 

    Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process

    , Article Materials and Design ; Volume 28, Issue 3 , 2007 , Pages 850-856 ; 02613069 (ISSN) Simchi, A ; Ahmadi, R ; Reihani, S. M. S ; Mahdavi, A ; Sharif University of Technology
    Elsevier Ltd  2007
    Abstract
    Design of nanoparticle synthesis by inert-gas condensation process was studied according to the mechanisms and kinetics of nucleation and growth in the vapor phase. The effect of process parameters, e.g., source temperature, evaporation rate, and the inert-gas pressure, on the particle size and particle shape was examined at the example for silver and copper-tin alloy. The synthesized nanopowders had near spherical shape with particle size range from 10 to 60 nm dependent on the processing condition. Scanning and transmission electron microscopy (SEM and TEM) analyses showed that the crystallites are subunits of larger agglomerate particles, and relatively large particles display crystal... 

    On the adsorption behavior of a fluorochemical onto carbonate rock with the application of wettability alteration to a gas wetting condition

    , Article Journal of Molecular Liquids ; Volume 326 , 2021 ; 01677322 (ISSN) Shayesteh, M ; Azadi Tabar, M ; Shafiei, Y ; Fakhroueian, Z ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, some new aspects of adsorption of a fluorochemical onto carbonate rocks as a wettability alteration agent to a gas wetting condition with the potential application for reduction of condensate blockage in gas condensate reservoirs are presented. To achieve this, kinetics, equilibrium, and thermodynamic of the adsorption process besides contact angle, imbibition, and characterization tests are investigated. Results of adsorption experiments revealed that kinetics behavior of the utilized fluorochemical–calcite system obeyed the pseudo-second order kinetics model. There was no change in adsorption after about 20 h. Also, the intraparticle diffusion mechanism was not the only rate... 

    Super gas wet and gas wet rock surface: state-of- the art evaluation through contact angle analysis

    , Article Petroleum ; 2021 ; 24056561 (ISSN) Azadi Tabar, M ; Dehghan Monfared, A ; Shayegh, F ; Barzegar, F ; Ghazanfari, M. H ; Sharif University of Technology
    KeAi Communications Co  2021
    Abstract
    Recently, super gas wet and gas wet surfaces have been extensively attended in petroleum industry, as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs. In many cases, contact angle measurement has been employed to assess the wettability alteration. Even though contact angle measurement seems to be a straightforward approach, there exist many misuses of this technique and consequently misinterpretation of the corresponding results. In this regard, a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas...