Loading...
Search for: glass
0.008 seconds

    Ionic liquid/graphene oxide as a nanocomposite for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase

    , Article Journal of Solid State Electrochemistry ; Volume 17, Issue 1 , January , 2013 , Pages 183-189 ; 14328488 (ISSN) Tasviri, M ; Ghasemi, S ; Ghourchian, H ; Gholami, M. R ; Sharif University of Technology
    2013
    Abstract
    By combination of 1-ethyl-3-methyl immidazolium ethyl sulfate as a typical room temperature ionic liquid (IL) and graphene oxide (GO) nanosheets, a nanocomposite was introduced for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase (GOx). The enzyme on the IL-GO-modified glassy carbon electrode exhibited a quasireversible cyclic voltammogram corresponding to the flavine adenine dinucleotide/FADH2 redox prosthetic group of GOx. At the scan rate of 100 mV s-1, the enzyme showed a peak-to-peak potential separation of 82 mV and the formal potential of -463 mV (vs Ag/AgCl in 0.1 M phosphate buffer solution, pH 7.0). The kinetic parameters of the charge transfer... 

    Electrochemical deposition of gold nanoparticles on carbon nanotube coated glassy carbon electrode for the improved sensing of tinidazole

    , Article Electrochimica Acta ; Volume 78 , September , 2012 , Pages 422-429 ; 00134686 (ISSN) Shahrokhian, S ; Rastgar, S ; Sharif University of Technology
    2012
    Abstract
    The electrochemical reduction of tinidazole (TNZ) is studied on gold-nanoparticle/carbon-nanotubes (AuNP/CNT) modified glassy carbon electrodes using the linear sweep voltammetry. An electrochemical procedure was used for the deposition of gold nanoparticles onto the carbon nanotube film pre-cast on a glassy carbon electrode surface. The resulting nanoparticles were characterized by scanning electron microscopy and cyclic voltammetry. The effect of the electrodeposition conditions, e.g., salt concentration and deposition time on the response of the electrode was studied. Also, the effect of experimental parameters, e.g., potential and time of accumulation, pH of the buffered solutions and... 

    Investigating the fracture network effects on sweep efficiency during wag injection process

    , Article Transport in Porous Media ; Volume 93, Issue 3 , July , 2012 , Pages 577-595 ; 01693913 (ISSN) Dehghan, A. A ; Ghorbanizadeh, S ; Ayatollahi, S ; Sharif University of Technology
    2012
    Abstract
    In this study, the main recovery mechanisms behind oil/water/gas interactions during the water-alternating-gas (WAG) injection process, in a network of matrix/fracture, were fundamentally investigated. A visual micromodel was utilized to provide insights into the potential applications of WAG process in fractured oil-wet media as well as the possibility of observing microscopic displacement behavior of fluids in the model. The model was made of an oil-wet facture/matrix network system, comprised of four matrix blocks surrounded with fractures. Different WAG injection scenarios, such as slug arrangements and the effects of fluid injection rates on oil recovery were studied. A new equation... 

    Experimental investigation of matrix wettability effects on water imbibition in fractured artificial porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 86-87 , 2012 , Pages 165-171 ; 09204105 (ISSN) Rezaveisi, M ; Ayatollahi, S ; Rostami, B ; Sharif University of Technology
    Abstract
    Spontaneous water imbibition into the matrix blocks is known as the main mechanism for increased oil recovery from naturally fractured oil reservoirs. The rate of oil recovery and its ultimate value is mostly affected by wettability of the rocks and their pore structure. Oil viscosity also greatly influences the rate of oil recovery. A novel experimental model was utilized to study the imbibition mechanism under different wettability conditions. Matrix blocks made from different grain types and size distributions of glass beads were saturated with two different types of synthetic oil, to mimic the oil-saturated matrixes. The wetting characteristic of the models used in this study were... 

    Glassy carbon electrode modified with a bilayer of multi-walled carbon nanotube and polypyrrole doped with new coccine: Application to the sensitive electrochemical determination of Sumatriptan

    , Article Electrochimica Acta ; Volume 56, Issue 27 , November , 2011 , Pages 10032-10038 ; 00134686 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Saberi, R. S ; Sharif University of Technology
    2011
    Abstract
    A promising electrochemical sensor was developed based on a layer by layer process by electro-polymerization of pyrrole in the presence of new coccine (NC) as dopant anion on the surface of the multi-walled carbon nanotubes (MWCNTs) pre-coated glassy carbon electrode (GCE). The modified electrode was used as a new and sensitive electrochemical sensor for voltammetric determination of sumatriptan (SUM). The electrochemical behavior of SUM was investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results showed a remarkable increase (∼12 times) in the anodic peak current of SUM in comparison to the bare GCE. The effect of experimental variables such... 

    A novel photometric glucose biosensor based on decolorizing of silver nanoparticles

    , Article Sensors and Actuators, B: Chemical ; Volume 158, Issue 1 , November , 2011 , Pages 185-189 ; 09254005 (ISSN) Tashkhourian, J ; Hormozi Nezhad, M. R ; Khodaveisi, J ; Dashti, R ; Sharif University of Technology
    2011
    Abstract
    A novel glucose biosensor based on chromophore (silver nanoparticles) decolorizing for the photometric determination of glucose was developed. Silver nanoparticles are directly synthesized in the sol-gel matrix by a one-step method based on the reduction of the inorganic precursor AgNO3 and were used for the preparation, characterization and calibration of a highly sensitive and cost-effective localized surface plasmon resonance-based glucose biosensor. In the presence of glucose oxidase (GOx) and due to the enzyme-substrate (glucose) reaction, H2O2 was produced and silver nanoparticles in the sol-gel glass have the ability for the decomposition of hydrogen peroxide. Due to the degradation... 

    Electrophoretic deposition of chitosan/45S5 Bioglass® composite coatings for orthopaedic applications

    , Article Surface and Coatings Technology ; Volume 205, Issue 23-24 , 2011 , Pages 5260-5268 ; 02578972 (ISSN) Pishbin, F ; Simchi, A ; Ryan, M. P ; Boccaccini, A. R ; Sharif University of Technology
    2011
    Abstract
    This article presents experimental results on the electrophoretic deposition (EPD) of bioresorbable chitosan/45S5 Bioglass® composite coatings for orthopaedic implants based on the Taguchi design of experiments (DOE) approach. The influence of EPD parameters including Bioglass® concentration, electric voltage and deposition time on deposition yield was studied by an orthogonal Taguchi array of L18 type. Multivariate analysis of variance (MANOVA) and regression analysis based on the partial least-square method were used to identify the significant factors affecting the deposition yield and its stability during constant-voltage EPD. The coatings were characterised by high resolution scanning... 

    Photoconductivity and diode effect in Bi rich multiferroic BiFeO 3 thin films grown by pulsed-laser deposition

    , Article Journal of Materials Science: Materials in Electronics ; Volume 22, Issue 7 , 2011 , Pages 815-820 ; 09574522 (ISSN) Ahadi, K ; Mahdavi, S. M ; Nemati, A ; Kianinia, M ; Sharif University of Technology
    2011
    Abstract
    Bismuth ferrite, BiFeO 3, is almost the only material that is simultaneously magnetic and a strong ferroelectric at room temperature. As a result it is the most investigated multiferroic material. In this study, bismuth ferrite thin films were deposited on silicon wafer (100) and glass by pulsed-laser deposition and their structural, optical, and electrical properties were measured. Our study indicates that Bi richness in these films can stimulate formation of oxygen vacancy in the system which in its turn leads to delocalization of carriers and a more intensified photoconductivity response. X-ray diffraction analysis revealed formation of BiFeO 3 (BFO), but it also showed formation of Bi 2O... 

    Exploring the tensile strain energy absorption of hybrid modified epoxies containing soft particles

    , Article Materials and Design ; Volume 32, Issue 5 , 2011 , Pages 2900-2908 ; 02641275 (ISSN) Abadyan, M ; Bagheri, R ; Kouchakzadeh, M. A ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    2011
    Abstract
    In this paper, tensile strain energy absorption of two different hybrid modified epoxies has been systematically investigated. In one system, epoxy has been modified by amine-terminated butadiene acrylonitrile (ATBN) and hollow glass spheres as fine and coarse modifiers, respectively. The other hybrid epoxy has been modified by the combination of ATBN and recycled Tire particles. The results of fracture toughness measurement of blends revealed synergistic toughening for both hybrid systems in some formulations. However, no evidence of synergism is observed in tensile test of hybrid samples. Scanning electron microscope (SEM), transmission optical microscope (TOM) and finite element (FEM)... 

    Fabrication and evaluation of nanocomposite membranes of polyethersulfone/α-alumina for hydrogen separation

    , Article Iranian Polymer Journal (English Edition) ; Volume 24, Issue 3 , 2015 , Pages 171-183 ; 10261265 (ISSN) Farrokhnia, M ; Rashidzadeh, M ; Safekordi, A ; Khanbabaei, G ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    In this study, polyethersulfone (PES)-based nanocomposite membranes with the incorporation of inorganic filler of α-alumina were prepared via thermal phase inversion method. The fabricated flat sheet-mixed matrix membranes were characterized using X-ray diffraction, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and atomic force microscope analysis, and the permeation tests were performed for hydrogen, nitrogen and carbon dioxide. Also prepared α-alumina particles were identified by X-ray diffraction and the surface area, total pore volume and average pore diameter of particles were measured with a high-speed gas-sorption analyzer. The... 

    Experimental investigation of tertiary oil gravity drainage in fractured porous media

    , Article Special Topics and Reviews in Porous Media ; Volume 1, Issue 2 , 2010 , Pages 179-191 ; 21514798 (ISSN) Rezaveisi, M ; Rostami, B ; Kharrat, R ; Ayatollahi, Sh ; Ghotbi, C ; Sharif University of Technology
    2010
    Abstract
    The amount of residual oil trapped in the matrix of a fractured reservoir after water drive, either natural water drive or water injection, depends on the wettability of the matrix rocks. Gas oil gravity drainage (GOGD) has been proposed as the tertiary oil recovery process for this type of oil reservoir. The current work focuses on experimental investigation of tertiary GOGD in fractured porous media under different types of matrix wettability. Results of a set of experiments performed in artificial porous media composed of sand packs and glass beads of different wettability have been used to check the GOGD rate and the ultimate oil recovery for previously waterflooded models. A novel... 

    Effects of preparation conditions on the morphology and gas permeation properties of polyethylene (PE) and ethylene vinyl acetate (EVA) films

    , Article Chemical Engineering Research and Design ; Volume 88, Issue 12 , 2010 , Pages 1593-1598 ; 02638762 (ISSN) Mousavi, S. A ; Gholizadeh, M ; Sedghi, S ; Pourafshari Chenar, M ; Ahmad Soltani, B ; Soltani, A ; Sharif University of Technology
    2010
    Abstract
    In this study, the effect of film preparation conditions on the gas permeation properties of polyethylene (PE) and ethylene vinyl acetate (EVA) films (containing 18 and 28wt% vinyl acetate) was investigated. Film blowing and phase inversion methods were applied in the production of PE and EVA films, respectively. The permeation of pure oxygen and carbon dioxide gases was measured at room temperature. The results indicated that with the increase of PE film thickness, permeability and solubility of O2 and CO2 in these films decreased; but the diffusivities of gases through PE films increased. In addition, in the case of EVA copolymers, by increasing the content of vinyl acetate, the... 

    Pore-level investigation of heavy oil recovery during water alternating solvent injection process

    , Article Transport in Porous Media ; Volume 83, Issue 3 , July , 2010 , Pages 653-666 ; 01693913 (ISSN) Dehghan, A. A ; Farzaneh, S. A ; Kharrat, R ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    2010
    Abstract
    This study concerns with the microscopic and macroscopic fluid distribution and flow behavior during water alternating solvent (WAS) injection process to heavy oil using micromodel generated from thin section of a real rock which has rarely attended in the available literature. In this study, a one-quarter five-spot glass micromodel was deployed to examine the effect of flow media topology on microscopic displacements as well as macroscopic efficiency of WAS process. The micromodel was initially saturated with the heavy oil, and then the hydrocarbon solvent and water were injected alternately into it. The observations confirmed that WAS injection scheme is an effective method for the... 

    Amine functionalized TiO2 coated on carbon nanotube as a nanomaterial for direct electrochemistry of glucose oxidase and glucose biosensing

    , Article Journal of Molecular Catalysis B: Enzymatic ; Volume 68, Issue 2 , 2011 , Pages 206-210 ; 13811177 (ISSN) Tasviri, M ; Rafiee Pour, H. A ; Ghourchian, H ; Gholami, M. R ; Sharif University of Technology
    Abstract
    A nano-composite material consisting of amine functionalized TiO 2-coated carbon nanotubes was prepared and used for glucose oxidase (GOx) absorption. The GOx bearing nanomaterial was fixed on a glassy carbon electrode to construct a novel biosensor for glucose determination. The direct electrochemistry of immobilized GOx and its electron transfer parameters at the modified glassy carbon electrode were reported. The apparent heterogeneous electron transfer rate constant (ks) of GOx was estimated to be 3.5 s-1, which is higher than those reported previously. Amperometric detection of glucose resulted in a rapid (3 s) and stable response in the linear concentration range from 1.8 to 266 μM.... 

    Preparation of UHMWPE/carbon black nanocomposites by in situ Ziegler–Natta catalyst and investigation of product thermo-mechanical properties

    , Article Polymer Bulletin ; Volume 73, Issue 4 , 2016 , Pages 1085-1101 ; 01700839 (ISSN) Sadrani, S. A ; Ramazani, S. A. A ; Khorshidiyeh, S. E ; Jafari Esfad, N ; Sharif University of Technology
    Abstract
    A new bi-supported Ziegler–Natta catalyst was prepared successfully by supporting TiCl4 on the carbon black (CB) and magnesium dichloride. Then, this catalyst was used to prepare ultrahigh molecular weight polyethylene (UHMWPE) nanocomposites via in situ polymerization. The effects of difference molar ratios of triisobutylaluminum as activator to TiCl4, polymerization temperature, pressure of monomer and polymerization time on productivity of the catalyst were studied. The maximum activity was obtained at [Al]/[Ti] = 121:1. Increasing monomer pressure raised catalyst activity. Increasing temperature to 60 °C increased the polymerization yield; however, the higher temperature decreased the... 

    A novel enzyme based biosensor for catechol detection in water samples using artificial neural network

    , Article Biochemical Engineering Journal ; Volume 128 , 2017 , Pages 1-11 ; 1369703X (ISSN) Maleki, N ; Kashanian, S ; Maleki, E ; Nazari, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Biosensors could be used as digital devices to measure the sample infield. Consequently, computational programming along with experimental achievements are required. In this study, a novel biosensor/artificial neural network (ANN) integrated system was developed. Poly (3,4-ethylenedioxy-thiophene)(PEDOT), graphene oxide nano-sheets (GONs) and laccase (Lac) were used to construct a biosensor. The simple and one-pot process was accomplished by electropolymerizing 3,4-ethylenedioxy-thiophene (EDOT) along with GONs and Lac as dopants on glassy carbon electrode. Scanning electron microscopy (SEM) and electrochemical characterization were conducted to confirm successful enzyme entrapment. The... 

    Synthesis and characterization of CaO-P2O5-SiO2-Li2O-Fe2O3 bioactive glasses: The effect of Li2O-Fe2O3 content on the structure and in-vitro bioactivity

    , Article Journal of Non-Crystalline Solids ; 2018 ; 00223093 (ISSN) Arabyazdi, S ; Yazdanpanah, A ; Ansari Hamedani, A ; Ramedani, A ; Moztarzadeh, F ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    CaO-P2O5-SiO2-Li2O-Fe2O3 magnetic bioactive glasses were prepared through an optimized sol-gel method. This study was emphasized on the effects of magnetic content addition on the bioactive glass properties. As the need arises, we study synthesized magnetic bioactive glass physical, rheological, and biocompatible properties. The morphology and composition of these glasses were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The particle size was also determined using a laser particle size analyzer (LPSA). The thermal measurements were put through using Differential thermal analysis (DTA). In order to evaluate the... 

    Nanocomposite with promoted electrocatalytic behavior based on bimetallic pd-ni nanoparticles, manganese dioxide, and reduced graphene oxide for efficient electrooxidation of ethanol

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 18 , 2018 , Pages 9783-9794 ; 19327447 (ISSN) Rezaee, S ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this work, a nanocomposite containing manganese dioxide (MnO2) modified reduced graphene oxide (rGO) supported bimetallic palladium-nickel (Pd-Ni) catalyst is prepared by electrodeposition method. The nanocomposite modifier film is prepared by forming a thin layer of graphene oxide (GO) via drop-casting of GO nanosheet dispersion on glassy carbon electrode (GCE), followed by electrochemical reduction of the film to provide rGO/GCE. Then, a two-step potential procedure is applied to deposit MnO2 nanoparticles on rGO/GCE. At the optimum deposition conditions, MnO2 nanoparticles with a thickness of 30-50 nm homogeneously covered the rGO surface (MnO2/rGO/GCE). Finally, the bimetallic Pd-Ni... 

    Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation

    , Article Applied Catalysis A: General ; Volume 369, Issue 1-2 , 2009 , Pages 77-82 ; 0926860X (ISSN) Akhavan, O ; Azimirad, R ; Sharif University of Technology
    2009
    Abstract
    The visible light photocatalytic activity of α-Fe2O3 nanograin chains coated by anatase TiO2 nanolayer, as a photocatalyst thin film for inactivation of Escherichia coli bacteria, was investigated for the solutions containing 106 colony forming units per milliliter of the bacteria, without and with H2O2 (60 μM). Thin films of the α-Fe2O3 nanograins with the grain size of 40-280 nm were grown on glass substrates by post-annealing of the thermal evaporated Fe3O4 thin films at 400 °C in air. The TiO2 layer with thickness of about 20 nm was coated on the nanograins by dipping the Fe2O3 thin films in a prepared TiO2 sol and re-annealing them at 400 °C in air. The antibacterial activity of the... 

    Persistent superhydrophilicity of sol-gel derived nanoporous silica thin films

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 2 , 2009 ; 00223727 (ISSN) Ganjoo, S ; Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    In this investigation, sol-gel synthesized nanoporous silica thin films, annealed at different temperatures, with long time superhydrophilic property have been studied. Two kinds of sol-gel silica thin films were fabricated by dip-coating of glass substrates in two different solutions; with low and high water. The transparent coated films were dried at 100 °C and then annealed in a temperature range of 200-500 °C. The average water contact angle of the silica films prepared with low water content and annealed at 300 °C measured about 5° for a long time (6 months) without any UV irradiation. Instead, adding water into the sol resulted in silica films with an average water contact angle...