Loading...
Search for: glass
0.011 seconds
Total 399 records

    The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

    , Article Ceramics International ; Volume 47, Issue 5 , 2021 , Pages 6653-6662 ; 02728842 (ISSN) Abdollahi, S ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase.... 

    The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

    , Article Ceramics International ; Volume 47, Issue 5 , 2021 , Pages 6653-6662 ; 02728842 (ISSN) Abdollahi, S ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase.... 

    Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    , Article Radiation Physics and Chemistry ; Vol. 96 , 2014 , pp. 12-18 ; ISSN: 0969806X Razavi, S. M ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Abstract
    Poly(lactic acid) (PLA)/poly(vinyl acetate-. co-vinyl alcohol) [P(VAc-. co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-. co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-. co-VA) immiscible... 

    Pore-Scale Monitoring of Wettability Alteration by Silica Nanoparticles During Polymer Flooding to Heavy Oil in a Five-Spot Glass Micromodel

    , Article Transport in Porous Media ; Volume 87, Issue 3 , 2011 , Pages 653-664 ; 01693913 (ISSN) Maghzi, A ; Mohebbi, A ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    It is well known that the oil recovery is affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of medium surfaces has remained a topic of debate in the literature. Furthermore, there is a little information of the way dispersed silica nanoparticles affect the oil recovery efficiency during polymer flooding, especially, when heavy oil is used. In this study, a series of injection experiments were performed in a five-spot glass micromodel after saturation with the heavy oil. Polyacrylamide solution and dispersed silica nanoparticles in polyacrylamide (DSNP) solution were used as injected fluids. The oil recovery as well as fluid distribution in... 

    Tribological characteristics of rubber-based friction materials

    , Article Tribology Letters ; Volume 41, Issue 2 , October , 2011 , Pages 325-336 ; 10238883 (ISSN) Arjmand, M ; Shojaei, A ; Sharif University of Technology
    2011
    Abstract
    This article deals with the rubber-based friction materials (RBFMs) which can be used in brake system. The physico-mechanical and tribological properties of a series of fiber filled RBFMs containing steel wool and aramid pulp at different concentrations along with a fiber-free reference material were characterized. Rubber-glass transition induced at higher sliding velocities was identified based on the friction fade behavior of the RBFMs. The rubber-glass transition which is inherently originated by viscoelastic response of polymeric binder was found to be influential on the tribological properties of the RBFMs. It was revealed that steel wool increased coefficient of friction (COF) and... 

    Thickness dependent activity of nanostructured TiO2/α- Fe2O3 photocatalyst thin films

    , Article Applied Surface Science ; Volume 257, Issue 5 , 2010 , Pages 1724-1728 ; 01694332 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    The effect of thickness of TiO2 coating on synergistic photocatalytic activity of TiO2 (anatase)/α-Fe 2O3/glass thin films as photocatalysts for degradation of Escherichia coli bacteria in a low-concentration H2O2 solution and under visible light irradiation was investigated. Nanograined α-Fe2O3 films with optical band-gap of 2.06 eV were fabricated by post-annealing of thermal evaporated iron oxide thin films at 400 °C in air. Increase in thickness of the Fe2O3 thin film (here, up to 200 nm) resulted in a slight reduction of the optical band-gap energy and an increase in the photoinactivation of the bacteria. Sol-gel TiO2 coatings were deposited on the α-Fe2O 3 (200 nm)/glass films, and... 

    Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly(benzimidazoles)/nanoparticle oxides composites

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 5 , 2018 , Pages 2803-2816 ; 03603199 (ISSN) Khosravanian, A ; Dehghani, M ; Pazirofteh, M ; Asghari, M ; Mohammadi, A. H ; Shahsavari, D ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Comprehensive structural/molecular simulations have been undertaken to study the poly(benzimidazoles) (PBI) membrane combined with four different nano-oxide materials (ZnO, Al2O3, SiO2 and TiO2) for purification and production of hydrogen from natural gases. Composite membranes were built with different amounts of nano-oxide materials to investigate the influence of nano-oxide content on the PBI membrane performance. Several structural characterizations such as FFV, WAXD and also a thermal one (glass transition temperature) were done to study the structural properties of all simulated membrane cells. Moreover, MSD and adsorption isotherms tasks were used to estimate the diffusivity and... 

    Electrophoretic Deposition of Alginate-Bioglass-Nanodiamond Nanocomposites and Evolution of their Bioactivity

    , M.Sc. Thesis Sharif University of Technology Mansoorianfar, Mojtaba (Author) ; Simchi, Abdollreza (Supervisor)
    Abstract
    Recently, diamond nanoparticles have attracted interest for biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds and biosensors. In the present work, elecrophoretic deposition (EPD) of nanodiamond-bioactive glass-alginate nanocomposite was studied. In vitro bioactivity and biocompatibility of the nanocomposite were evaluated in simulated body fluid (SBF) and by MTT assay. The EPD process was performed under different conditions in order to obtain a uniform coating on the surface of 316L stainless steel substrate. The stability of the suspension was determined via optical sedimentation method and zeta potential analysis. It was found that... 

    Effect of Intermediate Ni Layer on Glass-Stainless Steel Seal at Solid Oxide Fuel Cell

    , M.Sc. Thesis Sharif University of Technology Fakouri Hassanabadi, Masoud (Author) ; Kokabi, Amir Hossein (Supervisor) ; Nemati, Ali (Co-Advisor)
    Abstract
    In order to prevent deterioration of metallic interconnects in solid oxide fuel cells (SOFC), while interacting with glass-ceramic sealant, a nickel electroplated ferritic stainless steel (UNS 430) was used. After applying a layer of powdered glass (SiO2-B2O3-Al2O3-Na2O-BaO-K2O) with thickness around 300-450 μm on the ferritic stainless steel sheets with dimansion of 0.5 × 60 × 60 mm and 0.5 × 10 × 10 mm, samples were heated at temperatures between 770-850 °C and durations of 1 to 15 hours. To evaluate the effect of the Ni layer, two types of sample (only sanded and only electropolished) were also submitted to the same process, and their results were compared with the coated samples. XRF,... 

    Evaluation of Controlled Drug Release Chitosan-based Coatings on Titanium Implants: Microstructure, Bioactivity and Biocompatibility

    , Ph.D. Dissertation Sharif University of Technology Ordikhani, Farideh (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Implant-associated infections are one of the most serious complications in orthopaedic and trauma surgery as it may result in poor functional outcome, implant failure, chronic osteomyelitis or even death. Great concerns have been taken to reduce implant-associated infections through progressing in operating standards, minimizing the possibility of contamination during surgery, reducing the establishment of infection by perioperative antibiotic prophylaxis, and confining of pathogenic strains by patient isolation. In spite of these preventions, the percentage of postoperative infections is still rising. Composite coatings with bone-bioactivity and drug-eluting capacity are considered as... 

    Separation of Metal Ions-based Microfluidic Platform for Liquid-liquid Extraction

    , M.Sc. Thesis Sharif University of Technology Foroozan, Peyman (Author) ; Mohammadi, Ali Asghar (Supervisor) ; Karimi Sabet, Javad (Co-Advisor)
    Abstract
    Continuous separation processes in microfluidic devices experienced a steep rise in attention during the last two decades. Among the different separation processes, liquid-liquid extraction especially benefits from the short molecular diffusion distance and large specific interfacial area, as these are advantageous for effective mass transport. In the present study, glass-based microfluidic devices have been fabricated utilizing laser ablation and wet chemical etching methods then experiments and numerical simulation were carried out to investigate hydrodynamic behavior of fluid flow in Y-junction microfluidic. In order to achieve phase separation at the end of the microchannel, a phase... 

    YSZ Coating on Ferritic Stainless Steel Interconnect through Sol-Gel Method and Studying its Reaction with Glass Sealant in SOFC

    , M.Sc. Thesis Sharif University of Technology Mousa Mirabad, Homayoun (Author) ; Faghihi Sani, Mohammad Ali (Supervisor) ; Nemati, Ali (Supervisor)
    Abstract
    Solid oxide fuel cells are used to convert solid-state energy to direct electrical current by electrochemistry mixing a gas fuel and an oxidant in an oxide electrolyte. One of the most interesting aspects of this field for the researchers is the reaction between the metal interconnect and the glass sealant. In the current research, deposition of the YSZ coating onto the metal interconnect in order to impede the reaction with glass sealant and prohibition of its oxidation in oxidizing/reducing environment in high temperature, was mainly investigated. Effect of applying YSZ Thin layer in the intersection of Crofer steel and glass sealant on strength and chemical durability of these two... 

    Molecular Dynamic Study of Short-and Medium-Range order Structures in Bulk Metallic Glasses

    , Ph.D. Dissertation Sharif University of Technology Foroughi, Alireza (Author) ; Aashuri, Hosien (Supervisor) ; Tavakoli, Roholah (Supervisor)
    Abstract
    In this work, structures of Cu-Zr bulk metallic glasses at atomic scale were studied by molecular dynamics simulation. Bulk metallic glasses have high glass form ability, which makes it possible to more effectively examine the relationship between structure and properties in glassy materials. Due to this reason, this family of materials has been selected in this research. Voronoi tessellation method, coordination number analysis, short-range order examination, glass transition temperature and pair distribution function have been selected to investigate the structure in atomic scale. Results show that full icosahedron (with the highest five-fold symmetry) and some distorted icosahedra have... 

    Introducing a Numerical Method for Estimating Median Crack Depth during Machining on Optical Glasses

    , Ph.D. Dissertation Sharif University of Technology Asqari, Mohammad Amin (Author) ; Akbari, Javad (Supervisor)
    Abstract
    In present research, a cohesive based finite element model has been introduced to estimate median crack depth during mechanical machining on optical glasses. Development of the machining numerical model has been initiated by investigating the indentation process. Experimental results of this step have been calibrated primary numerical model which has been used in the scratch process. Due to differences between the scratch mechanism and indentation one, mathematical bases fracture formulas and cohesive relations have been developed. After extracting primary result, using them in the scratch model and developing the primary model, ultimately numerical model has been evolved to an abstract... 

    Ultrasonic-Assisted Drilling of Glass Fiber Reinforced Composites

    , M.Sc. Thesis Sharif University of Technology Forouzan, Ali (Author) ; Akbari, Javad (Supervisor)
    Abstract
    The fiber-reinforced composite materials possess advantage for structural purpose in various industries. Delamination is recognized as one of the major causes of damage during drilling of fiber reinforced composites, which not only reduces the structural integrity, but also has the potential for long-term performance deterioration. It is difficult to produce precise quality holes with high efficiency by conventional drilling method. Drilling is frequently applied in production cycle while the anisotropy and nonhomogeneity of composite materials affect the chip deformation and machining behavior during drilling. In this thesis, a new non-traditional drilling technology is presented for solve... 

    Bromine-lithium Exchange Reaction in Organic Synthesis Using Glass Microreactor

    , M.Sc. Thesis Sharif University of Technology Zeibi Shirejini, Saeed Reza (Author) ; Mohammadi, Aliasghar (Supervisor)
    Abstract
    Today, microreactors come into focus due to their exclusive characteristics including high surface-to-volume, lower consumption of reagents and fast mixing. In this study, optimization of the Br-Li exchange reaction as a consecutive reaction using glass microreactor is investigated. To construct glass microreactor, laser ablation and thermal bonding method are utilized. In order to find the best yield and selectivity of the reaction, various parameters, such as solvent, equivalent ration of the two reagents, concentration of the reagents, residence time and flow rates of the reagents are examined. In addition, atomic force microscopy (AFM) analysis was used to determine the surface... 

    Microfluidic Tensiometry and Investigation of Nanoparticles Adsorption at Liquid/Liquid Interfaces

    , M.Sc. Thesis Sharif University of Technology Arvahi, Milad (Author) ; Mohammadi, Ali Asghar (Supervisor)
    Abstract
    The present paper is an attempt to critically measure interfacial tension with microchannels and achieve the quantity of adsorption in the liquid – liquid interfaces and comparing the adsorption of surfactants and nanoparticles surface modificated as well. At this point we need to make emulsion and it is necessary for droplets to be monodispersed due to analyze these droplets in this paper. According to this condition for our droplets microsystems are the best options. As we know surfactants were already known as a stabilizing emulsion agent and in this paper nanoparticles are suggested as suitable alternatives for surfactants which can be absorbed as if they are in the water / oil... 

    Bromo-lithium Exchange Reaction in Organic Synthesis and Continuous Separation of Organic and Aqueous phase Reactions by Microfloid Technique

    , M.Sc. Thesis Sharif University of Technology Pourasghar Mohammadi, Ali (Author) ; Mohammadi, Ali Asghar (Supervisor) ; Bastani, Dariush (Supervisor)
    Abstract
    Today, with the development of micro-technology in chemical reactions, the use of appropriate systems for the separation and purification of synthesized chemicals seems to be necessary. In this study, the continuous synthesis of bromide-lithium exchange reaction and the separation of organic and aqueous phase products in micro systems was investigated.The method used to construct micro-separator and micro reactor, a laser engraving technique, and thermal bonding of glass to glass.In the first step, the factors affecting the separation of organic and aqueous phase in the capillary micro-separator, such as the width of the capillary, the length of the capillary, the number of capillaries and... 

    Feasibility Study on Ultrasonic Vibration Assisted Milling Process of BK7 Optical Glass

    , M.Sc. Thesis Sharif University of Technology Jamshidi Hassanabadi, Ali (Author) ; Akbari, Javad (Supervisor)
    Abstract
    This research studies the feasibility of the BK7 optical glass milling process with ultrasonic vibrations. Due to the fragility of glasses, especially optical glasses, machining is very sensitive and complex. For this reason, it is necessary to think for the glass machiners to minimize the defects and failures of the process. So far, efforts have been made to reduce the defects caused by machining on brittle materials, such as increasing the speed of the period, reducing the feed rate of the tool, changing the geometry and the type of tool, the type of process lubrication, etc. In addition, other operations performed to improve the surface of the glass are of better quality, using hybrid or... 

    Experimental Investigation on Debonding between FRP sheets and Structures

    , M.Sc. Thesis Sharif University of Technology Haghighi, Sina (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    This study has investigated the effects of different environmental conditions on the bond at the interface between two fiber reinforced polymer (FRP) layers. A total of 945 single lap splice coupons with three bond length were made using wet lay-up technic. There were used three unidirectional fabrics and one type of epoxy resin. A Uniaxial tensile test was performed on samples after 2, 4, 12, 20, 28, 36 and 48 weeks of exposure. Also series of test were conducted in order to determine the minimum lap splice length of single splice FRP samples. The experimental results indicated reduction of bond strength in glass specimens that was 17 % after 48 weeks of exposure while for same amount of...