Loading...
Search for: glass
0.016 seconds
Total 399 records

    Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study

    , Article Applied Energy ; Volume 268 , 2020 Zanganeh, P ; Soltani Goharrizi, A ; Ayatollahi, S ; Feilizadeh, M ; Dashti, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The condensation process is of great importance in many heat transfer devices in which a large amount of energy must be transferred. Furthermore, condensation is a crucial part of energy conversion and affects the energy efficiency of thermal desalination plants and solar stills. During the condensation process in solar stills, an essential part of the energy is transferred through the condensation surface to produce fresh water. Therefore, the condensation surface plays a significant role in the working efficiency of solar stills. The wettability of the condensation surface influences the condensation mechanism, which, in turn, affects the efficiency of solar stills. This study aims to... 

    Experimental investigation on the behavior of RC arches strengthened by GFRP composites

    , Article Construction and Building Materials ; Volume 235 , 28 February , 2020 Khaloo, A ; Moradi, H ; Kazemian, A ; Shekarchi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An experimental investigation on the behavior of RC arches strengthened by glass fiber-reinforced polymer (GFRP) composites is presented. Twelve samples were tested in order to determine influence of arrangement and number of GFRP layers on RC arches having different steel reinforcement ratios. The arches were tested under centrally concentrated point load using displacement control condition. Load-deflection behavior, failure mode, GFRP debonding, angle between hinge formation and supports and crack propagation pattern are studied extensively. Based on test results, extrados strengthening is much more effective than intrados strengthening in increasing ultimate load carrying capacity which... 

    The axial and lateral behavior of low strength concrete confined by GFRP wraps: an experimental investigation

    , Article Structures ; Volume 27 , October , 2020 , Pages 747-766 Khaloo, A ; Tabatabaeian, M ; Khaloo, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The purpose of this investigation is to investigate the axial and lateral behavior of low strength concrete confined by glass fiber reinforced polymer (GFRP) wraps. A total of 48 cylindrical samples having 150 mm diameter and 300 mm height were strengthened and examined. The mix designs were provided with four different target strength (5, 10, 15, and 20 MPa). The axial and lateral strain were studied to evaluate the axial strain relation and the lateral strain for axial compression. The results of this investigation present a comparison between the nine models previously reported for normal strength concrete and the lesser-known context of low strength concrete confined by fiber reinforced... 

    Assessment of plain and glass fiber-reinforced concrete under impact loading: a new approach via ultrasound evaluation

    , Article Journal of Nondestructive Evaluation ; Volume 38, Issue 4 , 2019 ; 01959298 (ISSN) Soleimanian, E ; Toufigh, V ; Sharif University of Technology
    Springer  2019
    Abstract
    Impact loading leads to micro-crack formation that can compromise the performance of the concrete. The purpose of this paper is to evaluate plain concrete and fiber-reinforced concrete specimens using ultrasound methods under impact loading. These specimens were prepared and subjected to impact loading. Ultrasound tests were performed at different stages of impact loading on each specimen. The loading continued until cracks on the surface of the specimens were observed. Investigations were performed for both plain concrete and fiber-reinforced concrete to establish a correlation between ultrasound response characteristics, and the damage caused by impact loading due to the energy of blows... 

    The effect of particle size on the structural, magnetic and electrical properties of La0.9Ba0.1MNO3 manganite samples

    , Article Phase Transitions ; Volume 92, Issue 11 , 2019 , Pages 949-959 ; 01411594 (ISSN) Shogh, S ; Eshraghi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this work, the magnetic and transport properties of micro and nanometer-sized samples of La0.9Ba0.1MnO3 manganite have been studied. The temperature variation of ac susceptibility of the nanometer-sized sample shows one transition at high temperature (265 K). On the contrary, the ac susceptibility of the micrometer-sized sample shows two transitions with a high-temperature transition occurring at 240 K and low-temperature transition around 100 K. The high-temperature transition corresponds to the paramagnetic-ferromagnetic (PM–FM) transition (Tc) and is independent of frequency, while the low-temperature transition is frequency-dependent and shifts toward high temperatures by increasing... 

    A new insight into pore body filling mechanism during waterflooding in a glass micro-model

    , Article Chemical Engineering Research and Design ; Volume 151 , 2019 , Pages 100-107 ; 02638762 (ISSN) Rezaei Dehshibi, R ; Sadatshojaie, A ; Mohebbi, A ; Riazi, M ; Sharif University of Technology
    Institution of Chemical Engineers  2019
    Abstract
    By displacing oil in porous media with other fluid, different mechanisms of fluid displacing occur. The importance of understanding the trapping mechanisms like pore body filling is irrefutable. Pore body filling mechanism with a coordination number of four has different events like I0, I1, I2 and I3. Previous studies showed that the event of I0 occurs when the pore is only filled by a compressible non-wetting phase, but this study showed that this event could also occur by an incompressible non-wetting phase. Trapping mechanisms can be examined in a glass micro-model. In this research, a glass micro-model with three different patterns was used. Results showed that at two spots of the... 

    Mass transfer through PDMS/zeolite 4A MMMs for hydrogen separation: Molecular dynamics and grand canonical Monte Carlo simulations

    , Article International Communications in Heat and Mass Transfer ; Volume 108 , 2019 ; 07351933 (ISSN) Riasat Harami, H ; Amirkhani, F ; Khadem, S. A ; Rezakazemi, M ; Asghari, M ; Shirazian, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In industry, utilizing membrane separation technology to purify natural gas streams is of remarkable significance. Molecular Simulation was used in the current article to study the structural and gas separation properties of polydimethylsiloxane (PDMS)/zeolite 4A Mixed Matrix Membranes (MMMs). To explore the optimal performance of MMMs, several structural analyses, namely Fractional Free Volume (FFV), Radial Distribution Function (RDF), X-Ray Diffraction (XRD) and also Glass Transition Temperature (Tg) as one of the most important properties of membranes have been evaluated. Also, the solubilities and diffusivities of periodic cells were respectively measured using MSD and adsorption... 

    Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets

    , Article Composites Part B: Engineering ; Volume 175 , 2019 ; 13598368 (ISSN) Habibi, M ; Taghdir, A ; Safarpour, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Due to a rapid development of process manufacturing, composite materials with graphene-reinforcement have obtained so much commercially notices in the promoted engineering applications. With this regard, the critical voltage and frequency characteristics of a graphene nanoplatelets (GNP) composite cylindrical nanoshell coupled with the piezoelectric actuator (PIAC) are investigated. The material properties of piece-wise graphene-reinforced composites (GNPRCs) are assumed to be graded through the thickness direction of a cylindrical nanoshell and are estimated based on a nanomechanical model. For the first time, the current study is considering the effects of the piezoelectric layer, GNPRC... 

    Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior

    , Article Materials Science and Engineering C ; Volume 103 , 2019 ; 09284931 (ISSN) Razaghzadeh Bidgoli, M ; Alemzadeh, I ; Tamjid, E ; Khafaji, M ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In order to regenerate bone defects, bioactive hierarchically scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced nutrient transport and diffusion. In this study, novel hierarchically porous silk fibroin (SF) and silk fibroin-bioactive glass (SF-BG) composite were fabricated with controlled architecture and interconnected structure, by combining indirect three-dimensional (3D) inkjet printing and freeze-drying methods. Further, the effect of 45S5 Bioactive glass particles of different sizes (<100 nm and 6 μm) on mechanical strength and cell behavior was investigated. The results demonstrated that the hierarchical structure in this scaffold was... 

    A new approach for preparation of semi-transparent superhydrophobic coatings by ultrasonic spray hydrolysis of methyltrimethoxysilane

    , Article Progress in Organic Coatings ; Volume 135 , 2019 , Pages 248-254 ; 03009440 (ISSN) Rahemi Ardekani, S ; Sabour Rouh Aghdam, A ; Nazari, M ; Bayat, A ; Saievar Iranizad, E ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A novel nebulizing spray hydrolysis approach was used for preparation of semi-transparent superhydrophobic coatings. Methyltrimethoxysilane was dissolved in water:ethanol mixture and ultrasonically sprayed on different substrates. Superhydrophobic coatings with a contact angle (CA) as high as 164° and a sliding angle below 5° were obtained. FESEM and AFM revealed a hierarchical micro-nano binary structure with nanometric roughness of the coatings. The coated glass substrate exhibited transmittance close to 80%. The prepared coating showed great self-cleaning and water jet repellency behaviors. The superhydrophobicity of the samples was remained after subjecting to ambient conditions for 50... 

    A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport

    , Article Food Chemistry ; Volume 293 , 2019 , Pages 57-65 ; 03088146 (ISSN) Fidan Yardimci, M ; Akay, S ; Sharifi, F ; Sevimli Gur, C ; Ongen, G ; Yesil Celiktas, O ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The bioavailability of drugs can be improved by regulating the structural properties, particularly lipoid systems, such as niosomes, can increase cellular uptake. Herein, we optimized double emulsion and niosomal formulations for encapsulating anthocyanin-rich black carrot extract. Nanoparticles obtained by selected formulation were characterized in terms of morphology, particle size, drug encapsulation efficiency, in vitro release and cytotoxicity. The optimum conditions for niosomal formulation were elicited as 30 mg of cholesterol, 150 mg of Tween 20 and feeding time of 1 min at a stirring rate of 900 rpm yielding the lowest average particle size of 130 nm. In vitro release data showed... 

    3D asymmetric carbozole hole transporting materials for perovskite solar cells

    , Article Solar Energy ; Volume 189 , 2019 , Pages 404-411 ; 0038092X (ISSN) Sheibani, E ; Heydari, M ; Ahangar, H ; Mohammadi, H ; Taherian Fard, H ; Taghavinia, N ; Samadpour, M ; Tajabadi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Carbazole compounds are p-type hole-transporting materials (HTMs) useful for perovskite solar cells (PSCs). In this work, we developed a new class of carbazol based HTMs; non-fused 3-D asymmetric structures (S14 and S12) as HTM of PSCs. To the best of our knowledge, there is no report on non-fused HTMs with a high glass transition temperature (Tg = 165 °C), which reduces crystallization and suppresses grain boundaries in glassy film, resulting in long-term durability. Experimental results show that tuning the carbazole moiety in S14 structure has a constructive influence on geometrical alignment, hole mobility, hydrophobicity, stability as well as efficiency. The resultant power conversion... 

    Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries

    , Article Composite Structures ; Volume 223 , 2019 ; 02638223 (ISSN) Jafari, A ; Ashrafi, H ; Bazli, M ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study investigates the effect of Thermal cycles on the mechanical properties of GFRP pultruded profiles with different geometries. Bending specimens consisted of I-shaped and U-channel profiles that were tested in three-point bending along their both principal weak and strong axes, whereas box profiles and laminates were used in compression and tension tests, respectively. Each specimen was exposed to a range of thermal cycles, between −20 °C and 20 °C. The failure modes of the profiles were closely investigated at both major and minor scales. Results were analyzed using ANOVA to determine the influence of each factor and a model was developed to predict the strength retention of... 

    An electrochemical sensing platform based on nitrogen-doped hollow carbon spheres for sensitive and selective isoprenaline detection

    , Article Journal of Electroanalytical Chemistry ; Volume 847 , 2019 ; 15726657 (ISSN) Shahrokhian, S ; Panahi, S ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this work, uniform and monodisperse hollow carbon spheres (HCSs) are synthesized through two different processes using polydopamine (PDA), as a carbon precursor, and silica core as a template, under the modified Stöber condition. The surface morphology of the synthesized structures is characterized by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier-transform infrared spectroscopy (FT-IR). In the next step, the electrochemical behavior of isoprenaline (ISPN) is investigated by using glassy carbon electrode modified with a thin film of the synthesized hollow carbon spheres. The electrochemical characterization of the modified electrodes is... 

    Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading

    , Article Engineering Structures ; Volume 191 , 2019 , Pages 62-81 ; 01410296 (ISSN) Sadraie, H ; Khaloo, A ; Soltani, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. This study investigated the effect of rebar's material, amount and arrangement of reinforcements, concrete strength and slab thickness on dynamic behavior of reinforced concrete slabs using both laboratory experiments and numerical simulations. Performance of fifteen 1000 × 1000 mm concrete slabs, including two 75 mm thick plain slabs,... 

    Advanced on-site glucose sensing platform based on a new architecture of free-standing hollow Cu(OH)2 nanotubes decorated with CoNi-LDH nanosheets on graphite screen-printed electrode

    , Article Nanoscale ; Volume 11, Issue 26 , 2019 , Pages 12655-12671 ; 20403364 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The planned design of nanocomposites combined with manageable production processes, which can offer controllability over the nanomaterial structure, promises the practical applications of functional nanomaterials. Hollow core-shell nanostructure architectures represent an emerging category of advanced functional nanomaterials, whose benefits derived from their notable properties may be hampered by complicated construction processes, especially in the sensing domain. In this regard, we designed a highly porous three-dimensional array of hierarchical hetero Cu(OH)2@CoNi-LDH core-shell nanotubes via a quick, very simple, green, and highly controllable three-step in situ method; they were... 

    Ni(II) 1D-coordination polymer/C 60 -modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor

    , Article Applied Surface Science ; Volume 478 , 2019 , Pages 361-372 ; 01694332 (ISSN) Shahhoseini, L ; Mohammadi, R ; Ghanbari, B ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A new non-enzymatic sensor for glucose is prepared by using of Ni(II)-one dimensional coordination polymer (Ni(II)-Cp) and C 60 . The Ni(II)-Cp prepared by slow diffusion and evaporation of two solution layers of NiCl 2 and diaza-macrocycle bearing two pyridine side arms (as the reported tecton) in DMF. The Ni(II)-Cp was characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) as well as Fourier transform infrared spectroscopy (FT-IR). C 60 as modified was added to Ni(II)-Cp for improving the electrical and chemical stability of the composite. The newly assembled Ni(II)-Cp/C 60 also coated on glassy carbon electrode (GC) to... 

    Seismic behavior of concrete moment frame reinforced with GFRP bars

    , Article Composites Part B: Engineering ; Volume 163 , 2019 , Pages 324-338 ; 13598368 (ISSN) Aliasghar Mamaghani, M ; Khaloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this research, four types of concrete moment frame were designed with glass fiber reinforced polymer (GFRP) bars according to ACI 440.1R-15 and the seismic behavior was assessed using pushover analysis. The frames were three and five stories with two and three bays. A computer code was developed to calculate the amount of fiber reinforced polymer bars in beams of the frames. In order to evaluate nonlinear behavior in plastic hinge regions, sections of beams and columns were analyzed on the basis of moment-curvature diagram and also P-M interaction curve for columns. Performance levels of frames were determined considering ATC-40 criteria. Behavior of concrete moment frames reinforced with... 

    Tribo-charging of binary mixtures composed of coarse and fine particles in gas–solid pipe flow

    , Article Particuology ; Volume 43 , 2019 , Pages 101-109 ; 16742001 (ISSN) Wang, H ; Fotovat, F ; Bi, X. T ; Grace, J. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Experiments were conducted to investigate the effect of adding fines on the tribo-charging of coarse glass beads. Four types of fines, i.e., copper, stainless steel, uncoated and silver-coated fine glass beads, mixed with 240–830 μm glass beads were conveyed by air through a stainless-steel spiral pipe acting as a tribo-charger. Regardless of the type or electrical conductivity of the fine particles tested, adding small amounts of fines (up to 10 wt%) to coarse glass beads resulted in a sharp increase in the mass and surface charge densities of the particles. In general, the profiles of the mass and surface charge densities of the fine–coarse particle mixtures as a function of the mixture... 

    Effect of fibers configuration and thickness on tensile behavior of GFRP laminates subjected to elevated temperatures

    , Article Construction and Building Materials ; Volume 202 , 2019 , Pages 189-207 ; 09500618 (ISSN) Jafari, A ; Bazli, M ; Ashrafi, H ; Vatani Oskouei, A ; Azhari, S ; Zhao, X. L ; Gholipour, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study was aimed at gaining an improved understanding of the behavior of glass fiber-reinforced polymer laminates at elevated temperatures by means of testing laminate specimens with unidirectional, woven, and randomly distributed (chopped strand mat) fibers. The testing parameters were temperature, the type of fiber, and the thickness of the laminates. The failure modes of the specimens and their elasticity moduli at ambient temperature were investigated, and analysis of variance was conducted to determine the contribution of each parameter to the behavioral test results. The findings showed that among the parameters, an increase in temperature exerted the strongest effect on the...