Loading...
Search for: glass-membrane-electrodes
0.009 seconds
Total 54 records

    In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine

    , Article Sensors and Actuators, B: Chemical ; Vol. 196 , June , 2014 , pp. 582-588 ; ISSN: 09254005 Asadian, E ; Shahrokhian, S ; Zad, A. I ; Jokar, E ; Sharif University of Technology
    Abstract
    The present paper demonstrates the capability of narrow graphene nanoribbons (GNRs) in constructing new sensing platforms. Graphene nanoribbons have been synthesized via a simple solvothermal route through unzipping of carbon nanotubes, which was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy analysis. These narrow carbon sheets were used to form a composite film by in-situ electro-polymerization with aniline. The produced graphene nanoribbon/polyaniline (GNR/PANI) composite film showed impressive performance in electrochemical determination of dobutamine (DBT). Under optimal conditions, in comparison to... 

    Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode

    , Article Bioelectrochemistry ; Volume 84 , 2012 , Pages 38-43 ; 15675394 (ISSN) Saberi, R. S ; Shahrokhian, S ; Sharif University of Technology
    2012
    Abstract
    The electrochemical behavior of lamotrigine (LMT) at the pyrolytic graphite electrode (PGE) is investigated in detail by the means of cyclic voltammetry. During the electrochemical reduction of LMT, an irreversible cathodic peak appeared. Cyclic voltammetric studies indicated that the reduction process has an irreversible and adsorption-like behavior. The observed reduction peak is attributed to a two-electron process referring to the reduction of azo group. The electrode showed an excellent electrochemical activity toward the electro-reduction of LMT, leading to a significant improvement in sensitivity as compared to the glassy carbon electrode. The results of electrochemical impedance... 

    Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite

    , Article Journal of Electroanalytical Chemistry ; Volume 808 , 2018 , Pages 114-123 ; 15726657 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Herein, a novel sensing platform based on NiCo layered double hydroxide (LDH) nanosheets/graphene nanoribbons (GNRs) modified glassy carbon electrode is presented for sensitive non-enzymetic determination of glucose. In the first step, nanoflower-like NiCo LDH nanosheets were grown on the surface of ZIF-67 dodecahedron nanocrystals which used as sacrificial template and were further characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and FTIR. In the next step, in order to fabricate a mechanically stable modified electrode, the as-prepared nanosheets were mixed with... 

    Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    , Article Electrochimica Acta ; Volume 55, Issue 11 , 2010 , Pages 3621-3627 ; 00134686 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Sharif University of Technology
    2010
    Abstract
    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental... 

    Glassy carbon electrode modified with a bilayer of multi-walled carbon nanotube and polypyrrole doped with new coccine: Application to the sensitive electrochemical determination of Sumatriptan

    , Article Electrochimica Acta ; Volume 56, Issue 27 , November , 2011 , Pages 10032-10038 ; 00134686 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Saberi, R. S ; Sharif University of Technology
    2011
    Abstract
    A promising electrochemical sensor was developed based on a layer by layer process by electro-polymerization of pyrrole in the presence of new coccine (NC) as dopant anion on the surface of the multi-walled carbon nanotubes (MWCNTs) pre-coated glassy carbon electrode (GCE). The modified electrode was used as a new and sensitive electrochemical sensor for voltammetric determination of sumatriptan (SUM). The electrochemical behavior of SUM was investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results showed a remarkable increase (∼12 times) in the anodic peak current of SUM in comparison to the bare GCE. The effect of experimental variables such... 

    Glassy carbon electrode modified with 3D graphene–carbon nanotube network for sensitive electrochemical determination of methotrexate

    , Article Sensors and Actuators, B: Chemical ; Volume 239 , 2017 , Pages 617-627 ; 09254005 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Ghorbani Bidkorbeh, F ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In the present study, a 3D porous graphene-carbon nanotube (G-CNT) network is successfully constructed on the surface of glassy carbon electrode (GCE) by electrochemical co-deposition from a concentrated graphene dispersion. The large accessible surface area provided by the interpenetrated graphene backbone in one hand and the enhanced electrical conductivity of the 3D network by incorporating CNTs on the other hand, dramatically improved the electrochemical performance of GCE in determination of Methotrexate (MTX) as an important electroactive drug compound. Under the optimum conditions, the electrode modification led to a significant increase in the anodic peak current (∼25 times) along... 

    Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 134 , 2019 , Pages 679-687 ; 02632241 (ISSN) Hatamie, A ; Jalilian, P ; Rezvani, E ; Kakavand, A ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Recently, graphitic carbon nitride (g-C3N4) has attracted great interest for photo(electro)chemical applications such as sensing, solar energy exploitation, photocatalysis, and hydrogen generation. This paper presents the potential application and benefits of g-C3N4 nanolayers as a green and highly efficient electrode modifier for the detection of trace lead ions in drinking water and urban dust samples. Carbon nitride nanosheets with a thickness of ∼6 A° and lateral of 100–150 nm were prepared through high-temperature polymerization of melamine followed by sonication-assisted liquid exfoliation. A glassy carbon electrode (GCE) was modified by a thin layer of g-C3N4 through drop casting and... 

    Facile electrochemical detection of morpholine in boiler water with carbon nanostructures: a comparative study of graphene and carbon nanotubes

    , Article Bulletin of Materials Science ; Volume 45, Issue 2 , 2022 ; 02504707 (ISSN) de Oliveira, S. M ; dos Santos Castro Assis, K. L ; Paiva, V. M ; Hashempour, M ; Bestetti, M ; de Araújo, J. R ; D’Elia, E ; Sharif University of Technology
    Springer  2022
    Abstract
    Two electrochemical sensors based on modified glassy carbon electrodes with carbon nanostructures as graphene (GCE–EG) and carbon nanotubes (GCE–CNT) were evaluated for morpholine analysis. The carbon nanostructures were obtained and characterized using X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and cyclic voltammetry. All spectroscopic and microscopic techniques confirmed the procurement of graphene and CNT. The electrochemical studies proved the efficient behaviour of both electrodes GCE–EG and GCE–CNT in sensing and detection of morpholine via differential pulse voltammetry.... 

    Fabrication of an electrochemical sensor based on the electrodeposition of Pt nanoparticles on multiwalled carbon nanotubes film for voltammetric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology

    , Article Journal of Solid State Electrochemistry ; Vol. 18, issue. 1 , 2014 , p. 77-88 Shahrokhian, S ; Hosseini-Nassab, N ; Kamalzadeh, Z ; Sharif University of Technology
    Abstract
    A glassy carbon electrode (GCE) is modified with platinum nanoparticle (PtNPs) decorated multiwalled carbon nanotube (MWCNT). The modified electrode is applied for the determination of ceftriaxone (CFX) in the presence of lidocaine. Different methods were used to characterize the surface morphology of the modified electrode. The electrochemical behavior of CFX was investigated at GCE, MWCNT/GCE and PtNPs/MWCNT/GCE. A factorial-based response-surface methodology was used to find out the optimum conditions with minimum number of experiments. Under the optimized conditions, oxidation peak currents increased linearly with CFX concentration in the range of 0.01-10.00 μM with a detection limit of... 

    Fabrication of a modified electrode based on Fe3 O4 NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA

    , Article Bioelectrochemistry ; Volume 86 , 2012 , Pages 78-86 ; 15675394 (ISSN) Shahrokhian, S ; Rastgar, S ; Amini, M. K ; Adeli, M ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes decorated with Fe 3O 4 nanoparticles (Fe 3O 4NPs/MWCNT) were prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electro-oxidation of adenine and guanine on the modified electrode were investigated by linear sweep voltammetry. The results indicate a remarkable increase in the oxidation peak currents together with negative shift in the oxidation peak potentials for both adenine and guanine, in comparison to the bare glassy carbon electrode (GCE). The surface morphology and nature of the composite film deposited on GCE were characterized by transmission electron microscopy, atomic force microscopy,... 

    Evaluation of molecular imprinted polymerized methylene blue/aptamer as a novel hybrid receptor for cardiac troponin I (cTnI) detection at glassy carbon electrodes modified with new biosynthesized ZnONPs

    , Article Sensors and Actuators, B: Chemical ; Volume 320 , 1 October , 2020 Mokhtari, Z ; Khajehsharifi, H ; Hashemnia, S ; Solati, Z ; Azimpanah, R ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this research, a novel, rapid, and non-immune electrochemical method was used to detect cardiac troponin I (cTnI) using a double recognition approach. Amine terminus cTnI aptamers immobilized on COOH-ZnO nanoparticles (COOH-ZnONPs) modified GCE surface were applied to capture cTnI for imprinting recognition. The COOH-ZnONPs were synthesized in a biological manner. Then, the methylene blue (MB) monomers were electro-polymerized around the cTnI-aptamer complexes. Following the removal of cTnI, cavities were constructed and converted to a new aptamer and molecular imprinted polymer (MIP) hybrid receptor (aptamer/MIP/ZnONPs). FT-IR spectra, SEM images, XRD patterns, and electrochemical... 

    Electrodeposition of Pt-Ru nanoparticles on multi-walled carbon nanotubes: Application in sensitive voltammetric determination of methyldopa

    , Article Electrochimica Acta ; Volume 58, Issue 1 , 2011 , Pages 125-133 ; 00134686 (ISSN) Shahrokhian, S ; Rastgar, S ; Sharif University of Technology
    2011
    Abstract
    A modified glassy carbon electrode, prepared by potentiostatic electrodeposition of platinum-ruthenium nanoparticles (Pt-RuNPs) onto a multi-walled carbon nanotube (MWCNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric responses toward methyldopa (m-dopa) compared to glassy carbon electrodes individually coated with MWCNT or Pt-RuNPs. The surface morphology and nature of the hybrid film (Pt-RuNPs/MWCNT) deposited on glassy carbon electrodes was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. A remarkable enhancement in the microscopic area of the electrode together... 

    Electrochemical study of Azathioprine at thin carbon nanoparticle composite film electrode

    , Article Electrochemistry Communications ; Volume 11, Issue 7 , 2009 , Pages 1425-1428 ; 13882481 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Sharif University of Technology
    2009
    Abstract
    Thin carbon nanoparticle/Nafion film (CNP/N), as a novel electrode material, is formed on the surface of the glassy carbon electrode in a simple solvent evaporation process. The electrochemical behavior of Azathioprine (Aza) at the CNP/N-modified electrode is investigated in detail by the means of cyclic voltammetry. During the electrochemical reduction of Aza, an irreversible cathodic peak is appeared. Cyclic voltammetric studies indicated that the reduction process has an irreversible and adsorption-like behavior. The observed reduction peak is attributed to a four-electron process referring to the reduction of nitro group to the corresponding hydroxylamine. The prepared electrode showed... 

    Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination

    , Article Electrochimica Acta ; Volume 57, Issue 1 , 2011 , Pages 132-138 ; 00134686 (ISSN) Shahrokhian, S ; Saberi, R. S ; Sharif University of Technology
    Abstract
    A composite film constructed of surfactant doped over-oxidized polypyrrole and multi-walled carbon nanotube was prepared on the surface of glassy carbon electrode by the electro-polymerization method. Surface characterization of the modified electrode was performed by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectrometry. The investigations have been proved that the over-oxidation of the modifier film resulted in a porous thin layer that improves the interlayer diffusion mechanism for the electroactive species. On the other hand, the negative charge density on the surface of the electrode excludes the negative analytes (e.g. ascorbate and Fe(CN)63?/4?)... 

    Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode

    , Article International Journal of Hydrogen Energy ; Volume 34, Issue 2 , 2009 , Pages 859-869 ; 03603199 (ISSN) Danaee, I ; Jafarian, M ; Forouzandeh, F ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2009
    Abstract
    The electro-oxidation of methanol on nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) in a 1 M NaOH solution at different concentrations of methanol was studied by the method of ac-impedance spectroscopy. Two semicircles in the first quadrant of a Nyquist diagram were observed for electro-oxidation of methanol on GC/Ni corresponding to charge transfer resistance and adsorption of intermediates. Electro-oxidation of methanol on GC/NiCu shows negative resistance in impedance plots as signified by semi-circles terminating in the second quadrant. The impedance behavior shows different patterns at different applied anodic potential. The influence of the... 

    Electrochemical determination of naltrexone on the surface of glassy carbon electrode modified with Nafion-doped carbon nanoparticles: Application to determinations in pharmaceutical and clinical preparations

    , Article Journal of Electroanalytical Chemistry ; Volume 638, Issue 2 , 2010 , Pages 212-217 ; 15726657 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    Abstract
    A new sensitive and selective electrochemical sensor was developed for determination of naltrexone (NAL) in pharmaceutical dosage form and human plasma. Naltrexone is an opioid antagonist which is commonly used for the treatment of narcotic addiction and alcohol dependence. A voltammetric study of naltrexone has been carried out at the surface of glassy carbon electrode (GCE) modified with Nafion-doped carbon nanoparticles (CNPs). The electrochemical oxidation of naltrexone was investigated by cyclic and differential pulse voltammetric techniques. The dependence of peak currents and potentials on pH, concentration and the potential scan rate was investigated. The electrode characterization... 

    Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron

    , Article Journal of Electroanalytical Chemistry ; Volume 636, Issue 1-2 , 2009 , Pages 40-46 ; 15726657 (ISSN) Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    Elsevier  2009
    Abstract
    There are high attractions in the development of conducting polymer (CP) coatings to improve the electrochemical properties and biocompatibility of electrodes in the area of biosensors. A new type of the modified electrodes is prepared in a layer-by-layer process by using multi-walled carbon nanotube (MWCNT) and poly-pyrrole. In this procedure, the glassy carbon electrode is casted by a drop suspension of MWCNT, which leads to form a thin film of nanotube on its surface. In the second step, electrochemical polymerization of pyrrole in the presence of tiron (used as doping anion) is performed on the surface of the MWCNT pre-coated electrode. The modification procedure led to fabrication of a... 

    Electrochemical determination of clozapine on MWCNTs/new coccine doped ppy modified GCE: An experimental design approach

    , Article Bioelectrochemistry ; Volume 90 , 2013 , Pages 36-43 ; 15675394 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Hamzehloei, A ; Sharif University of Technology
    2013
    Abstract
    The electrooxidation of clozapine (CLZ) was studied on the surface of a glassy carbon electrode (GCE) modified with a thin film of multiwalled carbon nanotubes (MWCNTs)/new coccine (NC) doped polypyrrole (PPY) by using linear sweep voltammetry (LSV). The pH of the supporting electrolyte (D), drop size of the cast MWCNTs suspension (E) and accumulation time of CLZ on the surface of modified electrode (F) was considered as effective experimental factors and the oxidation peak current of CLZ was selected as the response. By using factorial-based response-surface methodology, the optimum values of factors were obtained as 5.44, 10 μL and 300 s for D, E and F respectively. Under the optimized... 

    Electrochemical deposition of gold nanoparticles on carbon nanotube coated glassy carbon electrode for the improved sensing of tinidazole

    , Article Electrochimica Acta ; Volume 78 , September , 2012 , Pages 422-429 ; 00134686 (ISSN) Shahrokhian, S ; Rastgar, S ; Sharif University of Technology
    2012
    Abstract
    The electrochemical reduction of tinidazole (TNZ) is studied on gold-nanoparticle/carbon-nanotubes (AuNP/CNT) modified glassy carbon electrodes using the linear sweep voltammetry. An electrochemical procedure was used for the deposition of gold nanoparticles onto the carbon nanotube film pre-cast on a glassy carbon electrode surface. The resulting nanoparticles were characterized by scanning electron microscopy and cyclic voltammetry. The effect of the electrodeposition conditions, e.g., salt concentration and deposition time on the response of the electrode was studied. Also, the effect of experimental parameters, e.g., potential and time of accumulation, pH of the buffered solutions and... 

    Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode

    , Article International Journal of Hydrogen Energy ; Volume 33, Issue 16 , August , 2008 , Pages 4367-4376 ; 03603199 (ISSN) Danaee, I ; Jafarian, M ; Forouzandeh, F ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2008
    Abstract
    Nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetery (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of β/β crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. In CV studies, in the presence of methanol NiCu alloy modified electrode shows a significantly higher response for methanol oxidation. The peak current of the oxidation of nickel...