Loading...
Search for: grading
0.008 seconds
Total 341 records

    Micromechanical fem modeling of thermal stresses in functionally graded materials

    , Article 26th Congress of International Council of the Aeronautical Sciences 2008, ICAS 2008, Anchorage, AK, 14 September 2008 through 19 September 2008 ; Volume 2 , January , 2008 , Pages 2851-2859 ; 9781605607153 (ISBN) Akbarpour, S ; Motamedian, H. R ; Abedian, A ; Sharif University of Technology
    2008
    Abstract
    The most common use of FG materials is as barrier coating against large thermal gradients. Thermal stresses in FG materials, if not released, may cause structural discontinuities in outer surfaces or even inside the material such as cracks, debonding, etc. In this research work, using Finite element method and micromechanical modeling of FG thermal barrier coatings, stresses under thermal and mechanical loadings of the same and different phases have been investigated. Also, the effect of some parameters such as refinement and offsetting of particles on stresses are studied. As for the loading, thermal cycle and in-phase and out-of-phase thermo-mechanical cyclic loadings are considered. The... 

    Spectral equivalent inclusion method: Anisotropic cylindrical multi-inhomogeneities

    , Article Journal of the Mechanics and Physics of Solids ; Volume 56, Issue 12 , December , 2008 , Pages 3565-3575 ; 00225096 (ISSN) Shokrolahi Zadeh, B ; Shodja, H. M ; Sharif University of Technology
    2008
    Abstract
    Consider a set of nested infinitely extended elastic cylindrical bodies possessing general cylindrical anisotropy embedded in an unbounded elastic isotropic medium. For general far-field loading, the nature of the elastic fields inside the inhomogeneities is predicted and a number of pertinent attractive properties is noted and proved. Moreover, the associated equivalent inclusion method (EIM) is concisely formulated. The concepts of the homogenization, spectral consistency conditions, and the so-called Eshelby-Fourier tensor are introduced. As a result the tedious and lengthy algebra encountered in the conventional EIM is circumvented and the corresponding large number of unknowns is... 

    On thermoelastic fields of a multi-phase inhomogeneity system with perfectly/imperfectly bonded interfaces

    , Article International Journal of Solids and Structures ; Volume 45, Issue 22-23 , 2008 , Pages 5831-5843 ; 00207683 (ISSN) Hatami Marbini, H ; Mohammadi Shodja, H ; Sharif University of Technology
    2008
    Abstract
    The stress fields of cylindrical and spherical multi-phase inhomogeneity systems with perfect or imperfect interfaces under uniform thermal and far-field mechanical loading conditions are investigated by use of the Boussinesq displacement potentials. The radius of the core inhomogeneity and the thickness of its surrounding coatings are arbitrary. The discontinuities in the tangential and normal components of the displacement at the imperfect interfaces are assumed to be proportional to the associated tractions. In this work, for the problems where the phases of the inhomogeneity system are homogeneous, the exact closed-form thermo-elastic solutions are presented. These solutions along with a... 

    Free vibrations of functionally graded material cylindrical shell closed with two spherical caps

    , Article Ships and Offshore Structures ; 2021 ; 17445302 (ISSN) Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Free vibration response of a cylindrical shell closed with two hemispherical caps at the ends (hermit capsule) is analysed in this research. It is assumed that the system of joined shell is made from functionally graded materials (FGM). Properties of the shells are assumed to be graded through the thickness. Cylindrical and hemispherical shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first order theory of shells is used. Donnell type of kinematic assumptions are adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton's principle. The resulting... 

    Dynamic control of supported macro/micro-tubes conveying magnetic fluid utilizing intelligibly designed axially functionally graded materials

    , Article International Journal of Computer Integrated Manufacturing ; 2021 ; 0951192X (ISSN) Du, J ; Mirtalebi, S. H ; Ahmadian, M. T ; Cao, Y ; Suhatril, M ; Assilzadeh, H ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this study, dynamic modeling of an elbow axially functionally graded (AFG) macro/micro-tube carrying magnetic flow with different cross-sections is considered. Parametric optimization is performed for vibration suppression of such fluid-interaction systems. Implementing computer simulations, passive vibration control procedures, along with the effect of AFG materials and magnetic properties of the fluid as well as precisely manufactured geometry of the system, is investigated. It is assumed that the material characteristics of the system vary in the longitudinal direction based on exponential and power-law distribution profiles. Influence of the downstream inclination angle and... 

    Dynamic analysis of three-layer cylindrical shells with fractional viscoelastic core and functionally graded face layers

    , Article JVC/Journal of Vibration and Control ; Volume 27, Issue 23-24 , 2021 , Pages 2738-2753 ; 10775463 (ISSN) Shakouri, M ; Permoon, M. R ; Askarian, A ; Haddadpour, H ; Sharif University of Technology
    SAGE Publications Inc  2021
    Abstract
    Natural frequency and damping behavior of three-layer cylindrical shells with a viscoelastic core layer and functionally graded face layers are studied in this article. Using functionally graded face layers can reduce the stress discontinuity in the face–core interface that causes a catastrophic failure in sandwich structures. The viscoelastic layer is expressed using a fractional-order model, and the functionally graded layers are defined by a power law function. Assuming the classical shell theory for functionally graded layers and the first-order shear deformation theory for the viscoelastic core, equations of motion are derived using Lagrange’s equation and then solved via Rayleigh–Ritz... 

    The Reconstruction Conjecture and Edge Ideals

    , M.Sc. Thesis Sharif University of Technology Janani, Negar (Author) ; Pournaki, Mohammad Reza (Supervisor)
    Abstract
    Given a simple graph G on n vertices, we prove that it is possible to reconstruct several algebraic properties of the edge ideal from the deck of G, that is, from the collection of subgraphs obtained by removing a vertex from G. These properties include the Krull dimension, the Hilbert function, and all the graded Betti numbers. We also state many further questions that arise from our study  

    Modeling and Analysis of Cylindrical Swellable Elastomers

    , M.Sc. Thesis Sharif University of Technology Namdar, Amir Hossein (Author) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    When swellable elastomer are surrounded by suitable fluid, they absorb the fluid and swell. This capability is used to design different tools. For example, drug release devises, sensors and actuators, in microfluidic devises such as micro-valves and micro-mixers, and seal devises. Most of these devises are shaped cylindrically. Therefore, have a thorough knowledge about how cylindrical swellable elastomer behavior, give us a good vision about how to design such actuators. In this thesis we have used constitutive equation of such materials and have investigated behavior of cylindrical swellable elastomers analytically and numerically. Analytical investigation is focused of transient behavior... 

    Anti-plane shear of an arbitrary oriented crack in a functionally graded strip bonded with two dissimilar half-planes

    , Article Theoretical and Applied Fracture Mechanics ; Volume 54, Issue 3 , 2010 , Pages 180-188 ; 01678442 (ISSN) Torshizian, M. R ; Kargarnovin, M. H ; Sharif University of Technology
    2010
    Abstract
    An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated... 

    On the size-dependent behavior of functionally graded micro-beams

    , Article Materials and Design ; Volume 31, Issue 5 , May , 2010 , Pages 2324-2329 ; 02641275 (ISSN) Asghari, M ; Ahmadian, M. T ; Kahrobaiyan, M. H ; Rahaeifard, M ; Sharif University of Technology
    2010
    Abstract
    In this paper, the size-dependent static and vibration behavior of micro-beams made of functionally graded materials (FGMs) are analytically investigated on the basis of the modified couple stress theory in the elastic range. Functionally graded beams can be considered as inhomogeneous composite structures, with continuously compositional variation from usually a ceramic at the bottom to a metal at the top. The governing equations of motion and boundary conditions are derived on the basis of Hamilton principle. Closed-form solutions for the normalized static deflection and natural frequencies are obtained as a function of the ratio of the beam characteristic size to the internal material... 

    Thermoelastic fields of a functionally graded coated lnhomogeneity with sliding/perfect interlaces

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 74, Issue 3 , 2007 , Pages 389-398 ; 00218936 (ISSN) Hatami Marbini, H ; Shodja, H. M ; Sharif University of Technology
    2007
    Abstract
    The determination of the thermo-mechanical stress field in and around a spherical/ cylindrical inhomogeneity surrounded by a functionally graded (FG) coating, which in turn is embedded in an infinite medium, is of interest. The present work, in the frame work of Boussinesq/Papkovich-Neuber displacement potentials method, discovers the potential functions by which not only the relevant boundary value problems (BVPs) in the literature, but also the more complex problem of the coated inhomogeneities with FG coating and sliding interfaces can be treated in a unified manner. The thermo-elastic fields pertinent to the inhomogeneities with multiple homogeneous coatings and various combinations of... 

    Buckling analysis of three-dimensional functionally graded EulerBernoulli nanobeams based on the nonlocal strain gradient theory

    , Article Journal of Computational Applied Mechanics ; Volume 53, Issue 1 , 2022 , Pages 24-40 ; 24236713 (ISSN) Soleimani, A ; Zamani, F ; Gorgani, H. H ; Sharif University of Technology
    University of Tehran  2022
    Abstract
    This paper presents a nonlocal strain gradient theory for capturing size effects in buckling analysis of Euler-Bernoulli nanobeams made of threedimensional functionally graded materials. The material properties vary according to any function. These models can degenerate to the classical models if the material length-scale parameters is assumed to be zero. The Hamilton's principle applied to drive the governing equation and boundary conditions. Generalized differential quadrature method used to solve the governing equation. The effects of some parameters, such as small-scale parameters and constant material parameters are studied. © 2022 PAGEPress Publications. All rights reserved  

    The mixed-mode fracture mechanics analysis of an embedded arbitrary oriented crack in a two-dimensional functionally graded material plate

    , Article Archive of Applied Mechanics ; Vol. 84, Issue. 5 , 2014 , pp. 625-637 ; ISSN: 0939-1533 Torshizian, M. R ; Kargarnovin, M. H ; Sharif University of Technology
    Abstract
    Mixed-mode fracture mechanics analysis of an embedded arbitrarily oriented crack in a two-dimensional functionally graded material using plane elasticity theory is considered. The material properties are assumed to vary exponentially in two planar directions. Then, employing Fourier integral transforms with singular integral equation technique, the problem is solved. The stress intensity factors (SIFs) at the crack tips are calculated under in-plane mechanical loads. Finally, the effects of crack orientation, material non-homogeneity, and other parameters are discussed on the value of SIF in mode I and mode II fracture  

    Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory

    , Article Composite Structures ; Volume 102 , 2013 , Pages 72-80 ; 02638223 (ISSN) Tajalli, S. A ; Rahaeifard, M ; Kahrobaiyan, M. H ; Movahhedy, M. R ; Akbari, J ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    In this paper, a size-dependent formulation is developed for Timoshenko beams made of functionally graded materials (FGMs). The developed formulation is based on the strain gradient theory; a non-classical continuum theory able to capture the size-effect in micro-scaled structures. Five new equivalent length scale parameters are introduced as functions of the constituents' length scale parameters. It is shown that the size-dependent static and dynamic behavior of FG micro-beams can be described using these equivalent length scales. The governing differential equations of motion and both classical and non-classical sets of boundary conditions are derived for the proposed strain gradient FG... 

    Flutter of functionally graded open conical shell panels subjected to supersonic air flow

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 227, Issue 6 , 2013 , Pages 1036-1052 ; 09544100 (ISSN) Davar, A ; Shokrollahi, H ; Sharif University of Technology
    2013
    Abstract
    In this article, analysis of supersonic flutter of functionally graded open conical shell panels with clamped and simply supported edges is presented. The aeroelastic stability problem is formulated based on first-order shear deformation theory as well as classical shell theory and solved using Galerkin method. The effects of the volume fractions of constituent materials, the semi-vertex and subtended angles, thickness, and length on the flutter of the functionally graded conical shell panel are investigated. It is shown that the discrepancies between the results of the present classical shell theory and first-order shear deformation theory for the critical aerodynamic pressure are generally... 

    Strain gradient formulation of functionally graded nonlinear beams

    , Article International Journal of Engineering Science ; Volume 65 , 2013 , Pages 49-63 ; 00207225 (ISSN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2013
    Abstract
    In this paper size-dependent static and dynamic behavior of nonlinear Euler-Bernoulli beams made of functionally graded materials (FGMs) is investigated on the basis of the strain gradient theory. The volume fraction of the material constituents is assumed to be varying through the thickness of the beam based on a power law. As a consequence, the material properties of the microbeam (including length scales) are varying in the direction of the beam thickness. To develop the model, the usual simplifying assumption which considers the length scale parameter to be constant through the thickness is avoided and equivalent length scale parameters are introduced for functionally graded microbeams... 

    Deformation modeling of an FGM plate under external force

    , Article Advanced Materials Research ; Sharif University of Technology , Volume 622 , 2013 , Pages 246-253 ; 10226680 (ISSN) ; 9783037855638 (ISBN) Mortazavi Moghaddam, A. R ; Ahmadian, M. T ; Sarkeshi, M ; Kheradpisheh, A ; Sharif University of Technology
    2013
    Abstract
    Deformation modeling of an infinite plate of functionally graded materials (FGMs) loaded by normal force to the plate surface is studied. The material properties of FGM plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations are based on stress-strain relation and the equilibrium force equation. Keeping generality, FGM plate has been assumed as a multilayer with linear material property in each layer while arbitrary exponential material property through the thickness. A plate made of Aluminum and Alumina is considered as an example to illustrate the effects of the... 

    The sliding frictional contact problem in two dimensional graded materials loaded by a flat stamp

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 336-342 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Khajehtourian, R ; Adibnazari, S ; Tashi, S ; Sharif University of Technology
    2012
    Abstract
    In this article, the sliding frictional contact problem for a half-plane which is graded in two dimensions is studied. The effect of medium properties gradient and coefficient of friction in contact mechanics of two dimensional (2D) graded materials which is loaded by a flat stamp have been investigated by developing two Finite Element (FE) models, in macro and micro scales. Discretizing the graded half-plane by quadrants for whose material properties are specified at the centroids by Mori-Tanaka method in both directions has been used to model the 2D FGM in macro scale. In micro scale, the ideal solid quadrant particles which are spatially distributed in a homogeneous matrix used to model... 

    Three-dimensional elasticity analysis of functionally graded rotating cylinders with variable thickness profile

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 226, Issue 3 , 2012 , Pages 585-594 ; 09544062 (ISSN) Ghafoori, E ; Asghari, M ; Sharif University of Technology
    Abstract
    A three-dimensional elasticity solution for the analysis of functionally graded rotating cylinders with variable thickness profile is proposed. The axisymmetric structure has been divided in several divisions in the radial direction. Constant mechanical properties and thickness profile are assumed within each division. The solution is considered for four different thickness profiles, namely constant, linear, concave, and convex. It is shown that the linear, concave, and convex thickness profiles have smaller stress values compared to a constant thickness profile. The effects of various grading indices as well as different boundary conditions, namely solid, free-free hollow and fixed-free... 

    The effects of functionally graded material structure on wear resistance and toughness of repaired weldments

    , Article Materials and Design ; Volume 32, Issue 2 , February , 2011 , Pages 892-899 ; 02641275 (ISSN) Roshanghias, A ; Barzegari, M ; Kokabi, A. H ; Mirazizi, M ; Sharif University of Technology
    2011
    Abstract
    To perform a long lasting, crack-free repair welding on ultrahigh strength steels, the filler metal must be chosen and applied properly. Avoiding several short-term repairs or replacements, the repaired weldment should reveal comparative characteristics such as wear resistance, toughness and hardness to base metal. In the present study, a novel functionally graded material have been introduced to obtain enhanced wear resistance and hardness at surface as well as improved fracture toughness at fusion line of repaired weldments. A comparative study of wear resistance of repaired weld metals has been carried out by pin-on-disk apparatus at 5N normal load and 0.14ms-1 sliding speed. Fracture...