Loading...
Search for: grafting
0.006 seconds
Total 139 records

    Roll bonding of AA5052 and polypropylene sheets: bonding mechanisms, microstructure and mechanical properties

    , Article Journal of Adhesion ; Volume 93, Issue 7 , 2017 , Pages 550-574 ; 00218464 (ISSN) Rezaei Anvar, B ; Akbarzadeh, A ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Structural, microstructural and mechanical properties in roll bonding of AA5052 and polypropylene sheets have been evaluated in this study. The surface roughness of the AA5052 sheets, rolling temperature and the surface energy of polymer were selected as the bonding variables. The findings indicated that an increase in the surface energy of polypropylene by grafting maleic anhydride would result in higher bonding strength due to chemical interaction between the AA5052 and the maleic anhydride grafted polypropylene (PP-g-MAH). In fact, this reaction caused the formation of an interphase layer at the polymer side of the interface and the diffusion of aluminum into the PP-g-MAH layer. It was... 

    Improving mixed-matrix membrane performance: Via PMMA grafting from functionalized NH2-UiO-66

    , Article Journal of Materials Chemistry A ; Volume 6, Issue 6 , 2018 , Pages 2775-2791 ; 20507488 (ISSN) Molavi, H ; Shojaei, A ; Mousavi, S. A ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    The major obstacles in gas separation by mixed-matrix membranes (MMMs) are poor dispersion and poor affinity between polymers and fillers. The present study demonstrates that these challenges can be overcome appropriately by utilizing a series of synthesized stand-alone MMMs. The matrix used was polymethyl methacrylate (PMMA) and the MMMs were synthesized by in situ polymerization of methyl methacrylate (MMA) in the presence of UiO-66, NH2-UiO-66 and vinyl group attached UiO-66. In situ polymerization of MMA in the presence of vinyl attached UiO-66 resulted in PMMA grafted UiO-66 with a high degree of grafting. Microscopic analysis by field emission scanning electron microscopy (FESEM)... 

    Irradiation synthesis of biopolymer-based superabsorbent hydrogel: optimization using the taguchi method and investigation of its swelling behavior

    , Article Advances in Polymer Technology ; Volume 28, Issue 2 , 2009 , Pages 131-140 ; 07306679 (ISSN) Rezanejade Bardajee, G ; Pourjavadi, A ; Soleyman, R ; Sharif University of Technology
    2009
    Abstract
    In this report, the synthesis of a novel superabsorbent hydrogel via γ-irradiation graft copolymerization of acrylamide onto sodium alginate and kappa-carrageenan hybrid backbones in a homogeneous solution is described. The Taguchi method was used as a powerful experimental design tool for synthesis optimization. A series of superabsorbent hydrogels was synthesized by proposed conditions of Qualitek-4 software. Considering the results of nine trials according to analysis of variance, optimum conditions were proposed. The swelling behavior of optimum superabsorbent hydrogels was studied in various solutions, with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in... 

    Improvement of performance and fouling resistance of polyamide reverse osmosis membranes using acrylamide and TiO2 nanoparticles under UV irradiation for water desalination

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 11 , 2020 Asadollahi, M ; Bastani, D ; Mousavi, S. A ; Heydari, H ; Vaghar Mousavi, D ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    The purpose of this research is to explain the surface modification of fabricated polyamide reverse osmosis (RO) membranes using UV-initiated graft polymerization at different irradiation times (15, 30, 60, and 90 s) and various acrylamide concentrations (10, 20, and 30 g L−1). Also, coating of membranes surface with various concentrations of TiO2 nanoparticles (10, 20, 30, and 50 ppm) followed by the same UV irradiation times was investigated. After that, the membranes modification was done by grafting of acrylamide blended with TiO2 nanoparticles via UV irradiation. The characterization of membranes surface properties and their performance were systematically carried out. The results... 

    Advanced oil recovery by high molar mass thermoassociating graft copolymers

    , Article Journal of Petroleum Science and Engineering ; Volume 192 , 2020 Tamsilian, Y ; Shirazi, M ; Sheng, J. J ; Agirre, A ; Fernandez, M ; Tomovska, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The chemical, thermal, and mechanical degradation of polymer chains under high salinity, temperature, and shear rates in oil reservoirs are the current challenges of the polymer flooding process. To answer such a complex requirement, recently, acrylamide (AM)-based thermoassociating graft copolymers (TAP) were synthesized that presented excellent performance as a viscosity enhancer, especially under high temperature and salinity conditions. The purpose of this study was to further investigate the effect of salinity, shear rate, mechanical strength, and adsorption of these TAPs on viscosity-enhancing performance at different temperatures. Finally, the performance of the TAPs was studied in... 

    New protein-based hydrogel with superabsorbing properties: Effect of monomer ratio on swelling behavior and kinetics

    , Article Industrial and Engineering Chemistry Research ; Volume 47, Issue 23 , 2008 , Pages 9206-9213 ; 08885885 (ISSN) Pourjavadi, A ; Salimi, H ; Sharif University of Technology
    2008
    Abstract
    In this paper we report an efficient synthesis of hydrolyzed collagen-g-poly(sodium acrylate-co-2-hydroxyethyl aery late) hydrogel through chemical cross-linking by graft copolymerization of these two monomers onto the protein backbone in the presence of a cross-linker. Infrared spectroscopy and thermogravimetric analysis (TGA) were carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). To investigate the effect of monomer ratio on swelling behavior in various media three hydrogels with different acrylic acid/2-hydroxyethyl acrylate (AA/HEA) weight ratios were synthesized and swelling capacity was... 

    Can the body slope of interference screw affect initial stability of reconstructed anterior cruciate ligament?: An in-vitro investigation

    , Article BMC Musculoskeletal Disorders ; Volume 22, Issue 1 , 2021 ; 14712474 (ISSN) Daneshvarhashjin, N ; Chizari, M ; Mortazavi, J ; Rouhi, G ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Superior biomechanical performance of tapered interference screws, compared with non-tapered screws, with reference to the anterior cruciate ligament (ACL) reconstruction process, has been reported in the literature. However, the effect of tapered interference screw’s body slope on the initial stability of ACL is poorly understood. Thus, the main goal of this study was to investigate the effect of the interference screw’s body slope on the initial stability of the reconstructed ACL. Methods: Based on the best screw-bone tunnel diameter ratios in non-tapered screws, two different tapered interference screws were designed and fabricated. The diameters of both screws were equal to... 

    Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery

    , Article Carbohydrate Research ; Volume 487 , 2020 Forouzandehdel, S ; Forouzandehdel, S ; Rezghi Rami, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The magnetic composite hydrogel was fabricated by the graft copolymerization of itaconic acid (IA) onto starch and Alginic acid in the presence graphene sheets (Gr) and Fe3O4 nanoparticles (Fe3O4@Gr-IA/St-Alg) for Guaifenesin (GFN) delivery and wound healing. The Fe3O4@Gr-IA/St-Alg biomaterial is a hydrogel network endowed the material with magnetic property. In addition, GFN not only achieved effectively bound to the magnetic hydrogel, but also released in a controlled manner. The using external magnetic field has significantly positive influence on the drug release rate. To close, these hydrogel drug carriers offer a favorable platform for magnetically targeted drug delivery as well as a... 

    A noninvasive urine metabolome panel as potential biomarkers for diagnosis of t cell-mediated renal transplant rejection

    , Article OMICS A Journal of Integrative Biology ; Volume 24, Issue 3 , March , 2020 , Pages 140-147 Kalantari, S ; Chashmniam, S ; Nafar, M ; Samavat, S ; Rezaie, D ; Dalili, N ; Sharif University of Technology
    Mary Ann Liebert Inc  2020
    Abstract
    Acute T cell-mediated rejection (TCMR)is a major complication after renal transplantation. TCMR diagnosis is very challenging and currently depends on invasive renal biopsy and nonspecific markers such as serum creatinine. A noninvasive metabolomics panel could allow early diagnosis and improved accuracy and specificity. We report, in this study, on urine metabolome changes in renal transplant recipients diagnosed with TCMR, with a view to future metabolomics-based diagnostics in transplant medicine. We performed urine metabolomic analyses in three study groups: (1) 7 kidney transplant recipients with acute TCMR, (2) 15 kidney transplant recipients without rejection but with impaired kidney... 

    A Mathematical Model to Apportion the Cost of Kidney Purchasing in Domino-paired Donation

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Arian (Author) ; Najafi, Mehdi (Supervisor)
    Abstract
    The human body normally has two functioning kidneys, while only one of them is sufficient to have a healthy life. However, for those patients having no functioning kidney, transplantation is the most effective treatment. Although deceased donors have been usually used as the main source for kidney donation in many countries, there are several cases focusing on living kidney donation to compensate for the shortage in supply and to reduce the patient waiting time for treatment. Because of this potential, many studies have been conducted to optimize the non-clinical issues of kidney transplant waiting lists. Notwithstanding employing the financial incentives for living kidney donation is... 

    Construction of Suitable Polymeric Membrane by Thermal Induce Phase Separation (TIPS) for using in the Membrane Bioreactor (MBR)

    , M.Sc. Thesis Sharif University of Technology Jahanbakhshi, Nader (Author) ; Farhadi, Fathollah (Supervisor) ; Mousavi, Abbas (Supervisor)
    Abstract
    In this study, the response surface methodology (RSM) based on the central composite design (CCD) were used to prepare a polypropylene grafted maleic anhydride (PP-g-MA) microporous flat sheet membrane via thermally induced phase separation (TIPS) method. Mixture of dibutyl phthalate (DBP) and dioctyl phthalate (DOP) were used as diluent. The effect of the polymer composition and coagulation bath temperature on the morphology and performance of the fabricated microporous membranes in a bioreactor (MBR) were investigated. Analysis of variance (ANOVA) was used to determine which variables and interactions between variables have a significant effect on our responses. The ANOVA revealed that the... 

    Investigation of Operating Parameters for Thorium Adsorption from Wastewater by Using of Radiated Grafting Polymeric Adsorbents in Packed Bed Column

    , M.Sc. Thesis Sharif University of Technology Kazzazi, Sina (Author) ; Outokesh, Mohamad (Supervisor) ; Torab Mostaedi, Meysam (Supervisor) ; Asadollahzadeh, Mehdi (Co-Supervisor) ; Torkaman, Rezvan (Co-Supervisor)
    Abstract
    Today, the pollution of heavy metals in wastewater and surface waters, which is a global environmental problem, has increased with the expansion of various industrial activities. Heavy metals cause serious health problems due to their accumulation in human and animal tissues. Thorium, is a radioactive element with an atomic number of 90 that is widely used in the optics, aerospace, metallurgy and chemical industries, in the manufacture of high-strength alloys, in UV photocells, and especially in the nuclear industry. The primary sources of radioactive wastewater include nuclear power plants, nuclear energy industry research centers, medical institutions, industrial production, universities,... 

    Synthesis of new electromagnetic nanocomposite based on modified Fe3O4 nanoparticles with enhanced magnetic, conductive, and catalytic properties

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 65, Issue 8 , 2016 , Pages 384-390 ; 00914037 (ISSN) Pourjavadi, A ; Doroudian, M ; Afshar Saveh, Z ; Doulabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    A new method for the fabrication of an electromagnetic nanocomposite based on Fe3O4 and polyaniline (PANI) is offered. The authors focused on improvement of the physical and electromagnetic properties of the nanocomposite using a new synthetic method. Supermagnetic Fe3O4 nanoparticles were synthesized through coprecipitation method. As a chemical modification, the third generation of poly (amidoamine) dendrimer was grafted on the surface of the nanoparticles. PANI was grafted from -NH2 functional groups of dendrimer via in situ polymerization of aniline. Finally, Au nanoparticles were loaded on the nanocomposite and its catalytic activity for reduction reactions was studied  

    Ethylenediamine grafting to functionalized NH2-UiO-66 using green aza-Michael addition reaction to improve CO2/CH4 adsorption selectivity

    , Article Industrial and Engineering Chemistry Research ; Volume 57, Issue 20 , April , 2018 , Pages 7030-7039 ; 08885885 (ISSN) Molavi, H ; Ahmadi Joukani, F ; Shojaei, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Three versions of zirconium-based metal organic frameworks, NH2-UiO-66, GMA-UiO-66, and EDA-UiO-66, were synthesized and employed as adsorbent for CO2/CH4 separation. GMA-UiO-66 was synthesized via a ring opening reaction between the amine species in the framework and epoxy groups in glycidyl methacrylate (GMA), while the green aza-Michael addition reaction was used for the first time to functionalize GMA-UiO-66 with ethylenediamine (EDA). The products were characterized by BET, XRD, TGA, FESEM, ICP-OES, 1H NMR, mass spectroscopy, and FTIR-ATR methods to monitor their textural properties before and after functionalization. The results indicated that GMA was successfully grafted to the... 

    Solute dispersion by electroosmotic flow through soft microchannels

    , Article Sensors and Actuators, B: Chemical ; Volume 255, Part 3 , February , 2018 , Pages 3585-3600 ; 09254005 (ISSN) Hoshyargar, V ; Khorami, A ; Ashrafizadeh, S. N ; Sadeghi, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    We study the hydrodynamic dispersion (HD) by electroosmotic flow in soft microchannels. Considering a fully developed flow in a slit microchannel of low surface potential and adopting the Taylor dispersion theory, we derive analytical solutions for the solute concentration field and the effective dispersion coefficient. We also conduct numerical analyses to broaden the paper's scope to high surface potentials and to specify a criterion for the validity of the Debye-Hückel linearization in soft microconduits as well as to investigate the broadening of an analyte band from the time of injection. It is demonstrated that the effective dispersion coefficient of a neutral solute band is generally... 

    Amino-silane-grafted NH2-MIL-53(Al)/polyethersulfone mixed matrix membranes for CO2/CH4 separation

    , Article Dalton Transactions ; Volume 48, Issue 36 , 2019 , Pages 13555-13566 ; 14779226 (ISSN) Ahmadijokani, F ; Ahmadipouya, S ; Molavi, H ; Arjmand, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Mixed-matrix membranes (MMMs) are promising candidates for carbon dioxide separation. However, their application is limited due to improper dispersion of fillers within the polymer matrix, poor interaction of fillers with polymer chains, and formation of defects and micro-voids at the interface of both phases, which all result in the decline of the gas separation performance of MMMs. In this work, we present a new method to overcome these challenges. To this end, a series of MMMs based on polyethersulfone (PES) as the continuous polymer matrix and MIL-53-derived MOFs as the dispersed filler were prepared. FTIR-ATR, XRD, TGA, FESEM, and N2 adsorption/desorption analyses were employed to... 

    Synthesis and investigation of swelling behavior of grafted alginate/alumina superabsorbent composite

    , Article Starch/Staerke ; Volume 60, Issue 9 , 9 September , 2008 , Pages 457-466 ; 00389056 (ISSN) Pourjavadi, A ; Farhadpour, B ; Seidi, F ; Sharif University of Technology
    2008
    Abstract
    In this study a novel alginate-g-poly(acrylic acid)/alumina composite was synthesized and characterized. Preparation of the composite hydrogels involved free radical polymerization of a combination of alginate, acrylic acid (AA) and distilled water, in appropriate amounts and N,N-methylene bisacrylamide (MBA) as crosslinking agent. The composite formation was confirmed by Fourier transform infrared spectroscopic (FTIR). The surface morphologies of the synthesized hydrogels were assessed by scanning electron microscopy. Systematically, the different variables of the graft copolymerization were optimized to achieve maximum swelling capacity. The swelling of superabsorbent hydrogels was... 

    Grafted CMC/silica gel superabsorbent composite: Synthesis and investigation of swelling behavior in various media

    , Article Journal of Applied Polymer Science ; Volume 108, Issue 5 , 2008 , Pages 3281-3290 ; 00218995 (ISSN) Pourjavadi, A ; Seidi, F ; Salimi, H ; Soleyman, R ; Sharif University of Technology
    2008
    Abstract
    In the present study, we attempt to synthesize and characterize novel CMC-g-poly (acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid)/silica gel composite. Infrared spectroscopy and TGA thermal analysis were carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy. The effect of reaction variables affecting on water absorbency of the composite and swelling behavior in various solvents, salt, and pH solutions was investigated. Maximum water absorbency of the optimized final product was found to be 4000 g/g in distilled water. The absorbency under load (AUL) of the hydrogel was also determined by... 

    Modification of isotactic polypropylene by the free-radical grafting of 1,1,1-trimethylolpropane trimethacrylate

    , Article Journal of Applied Polymer Science ; Volume 104, Issue 2 , 2007 , Pages 950-958 ; 00218995 (ISSN) Mousavi Saghandikolaei, S. A ; Frounchi, M ; Dadbin, S ; Augier, S ; Passaglia, E ; Ciardelli, F ; Sharif University of Technology
    2007
    Abstract
    The chemical modification of isotactic polypropylene was performed by the free-radical-promoted grafting of 1,1,1-trimethylolpropane trimethacrylate (TMPTMA) in the presence of dicumyl peroxide (DCP) as the initiator. The reaction was carried out both in a batch internal mixer and in a corotating twin-screw extruder; the effects of the peroxide and monomer concentrations on the extent of modification in terms of the grafting efficiency and polymer chain structure variations were investigated. The modified samples were characterized with Fourier transform infrared to determine the structure of the grafted groups and the degree of functionalization, with gel permeation chromatography and the... 

    Comparison of mechanical properties in interference screw fixation technique and organic anterior cruciate ligament reconstruction method: a biomechanical study

    , Article BMC Musculoskeletal Disorders ; Volume 22, Issue 1 , 2021 ; 14712474 (ISSN) Borjali, A ; Nourani, A ; Moeinnia, H ; Mohseni, M ; Korani, H ; Ghias, N ; Chizari, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Bone and Site Hold Tendon Inside (BASHTI) technique is an organic implant-less technique for anterior cruciate ligament (ACL) reconstruction with some clinical advantages, such as speeding up the healing process, over implantable techniques. The study aims to compare the mechanical properties of BASHTI technique with the conventional interference screw technique. Methods: To investigate the mechanical properties, 20 in-vitro experimental tests were conducted. Synthetic dummy bone, along with fresh digital bovine tendons, as a graft, were used for experiments. Three loading steps were applied to all specimens, including a preconditioning, a main cyclic, and a pull-out loading....