Loading...
Search for: graphene
0.008 seconds
Total 884 records

    Tunable spontaneous emission from layered graphene/dielectric tunnel junctions

    , Article IEEE Journal of Quantum Electronics ; Vol. 50, issue. 5 , 2014 , p. 307-313 Khorasani, S. A ; Sharif University of Technology
    Abstract
    There has been a rapidly growing interest in optoelectronic properties of graphene and associated structures. Despite the general belief on absence of spontaneous emission in graphene, which is normally attributed to its unique ultrafast carrier momentum relaxation mechanisms, there exist a few recent evidences of strong optical gain and spontaneous light emission from monolayer graphene, supported by observations of dominant role of out-of-plane excitons in polycyclic aromatic hydrocarbons. In this paper, we develop a novel concept of light emission and optical gain from simple vertical graphene/dielectric tunnel junctions. It is theoretically shown that the possible optical gain or... 

    Construction of Dirac points using triangular supercrystals

    , Article Applied Physics A: Materials Science and Processing ; Volume 115, Issue 2 , May , 2014 , Pages 581-587 ; ISSN: 09478396 Aram, M. H ; Mohajeri, R ; Khorasani, S ; Sharif University of Technology
    Abstract
    We show a methodology for how to construct Dirac points that occur at the corners of Brillouin zone as the Photonic counterparts of graphene. We use a triangular lattice with circular holes on a silicon substrate to create a Coupled Photonic Crystal Resonator Array (CPCRA) which its cavity resonators play the role of carbon atoms in graphene. At first we draw the band structure of our CPCRA using the tight-binding method. For this purpose we first designed a cavity which its resonant frequency is approximately at the middle of the first H-polarization band gap of the basis triangular lattice. Then we obtained dipole modes and magnetic field distribution of this cavity using the Finite... 

    Analytical modeling of graphene ribbons as optical circuit elements

    , Article IEEE Journal of Quantum Electronics ; Vol. 50, issue. 6 , 2014 , pp. 397-403 ; ISSN: 00189197 Khavasi, A ; Rejaei, B ; Sharif University of Technology
    Abstract
    We demonstrate that graphene ribbons can be modeled as circuit elements, which have dual capacitive-inductive nature. In the subwavelength regime, the surface current density on a single graphene ribbon subject to an incident p-polarized plane wave is derived analytically and then it is extended to coplanar arrays of graphene ribbons by applying perturbation theory. It is demonstrated that even isolated graphene ribbons have capacitive properties and the interaction between them in an array only changes the capacitance. Finally, we propose an accurate circuit model for the ribbon array by applying appropriate boundary conditions  

    Interaction of hydrogen molecules with perfect, defective and scandium doped polycyclic aromatic hydrocarbon structures

    , Article Computational and Theoretical Chemistry ; Volume 1026 , 2013 , Pages 65-71 ; ISSN: 2210271X Lotfi, R ; Saboohi, Y ; Sharif University of Technology
    2013
    Abstract
    In the present work the interaction of hydrogen molecules with perfect, defective and scandium doped polycyclic aromatic hydrocarbon (PAH) has been evaluated. At first the potential barrier for the penetration of hydrogen molecules through PAH structures has been investigated and then the adsorption of hydrogen molecules over PAH structures has been studied. To model the graphene surface for barrier calculations, it is shown that coronene can successfully estimate the graphene monolayer. The barrier height is calculated for perfect and two different defective PAH structures including Stone-Wales (SW) and 585. It is found that PAH even with small defects is impermeable to hydrogen molecules.... 

    Differentiation of human neural stem cells into neural networks on graphene nanogrids

    , Article Journal of Materials Chemistry B ; Volume 1, Issue 45 , 2013 , Pages 6291-6301 ; 20507518 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    Graphene nanogrids (crossed graphene nanoribbons synthesized by the oxidative unzipping of multi-walled carbon nanotubes) on a SiO2 matrix containing TiO2 nanoparticles (NPs) were applied as a photocatalytic stimulator in the accelerated differentiation of human neural stem cells (hNSCs) into two-dimensional neural networks. The hydrophilic graphene nanogrids exhibited patterned proliferations of hNSCs (consistent with patterns of the nanogrids), in contrast with the usual random growths occurring on quartz substrates. The number of cell nuclei differentiated on reduced graphene oxide nanoribbon (rGONR) grid/TiO2 NPs/SiO2 increased ∼5.9 and 26.8 fold compared to the number of cells on quartz... 

    Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures

    , Article Journal of Physical Chemistry C ; Volume 117, Issue 48 , December , 2013 , Pages 25298-25304 ; 19327447 (ISSN) Yeltik, A ; Kucukayan-Dogu, G ; Guzelturk, B ; Fardindoost, S ; Kelestemur, Y ; Demir, H. V ; Sharif University of Technology
    2013
    Abstract
    Solution processed graphene variants including graphene oxide (GO) and reduced graphene oxide (RGO) are promising materials for potential optoelectronic applications. To date, efficiency of the excitation energy transfer into GO and RGO thin layers has not been investigated in terms of donor-acceptor separation distance. In the present work, we study nonradiative energy transfer (NRET) from CdSe/CdS quantum dots into single and/or double layer GO or RGO using time-resolved fluorescence spectroscopy. We observe shorter lifetimes as the separation distance between the QDs and GO or RGO decreases. In accordance with these lifetimes, the rates reveal the presence of two different mechanisms... 

    Peculiar transport properties in Z-shaped graphene nanoribbons: A nanoscale NOR gate

    , Article Thin Solid Films ; Volume 548 , 2013 , Pages 443-448 ; 00406090 (ISSN) Khoeini, F ; Khoeini, F ; Shokri, A ; Sharif University of Technology
    2013
    Abstract
    A nanoscale logic NOR gate has been theoretically designed by magnetic flux inputs in a Z-shaped graphene nanoribbon composed of an armchair ribbon device sandwiched between two semi-infinite metallic zigzag ribbon leads. The calculations are based on the tight-binding model and iterative Green's function method, in which the conductance as well as current-voltage characteristics of the nanosystem are calculated, numerically. We show that the current and conductance are highly sensitive to both the magnetic fluxes subject to the device and the size of the system. Our results may have important applications for building blocks in the nanoelectronic devices based on graphene nanoribbons  

    Crosstalk stability analysis in multilayer graphene nanoribbon interconnects

    , Article Circuits, Systems, and Signal Processing ; Volume 32, Issue 6 , 2013 , Pages 2653-2666 ; 0278081X (ISSN) Akbari, L ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    In this paper a time-domain response and Nyquist stability criterion to acquire dependence of degree of crosstalk relative stability based on transmission lines modeling (TLM) is investigated for coupled multilayer graphene nanoribbon (MLGNR) interconnects. This is the first instance that such an analysis has been presented for coupled MLGNR consisting of both capacitive and mutual-inductive couplings. The near-end and far-end outputs of coupled MLGNR individually are compared in two cases, with considering both couplings and without them (single MLGNR). It is observed that the near-end output of the system together with both couplings is more stable and at its far-end output, an induced... 

    Vanadium pentoxide catalyst over carbon-based nanomaterials for the oxidative dehydrogenation of propane

    , Article Industrial and Engineering Chemistry Research ; Volume 52, Issue 46 , 2013 , Pages 16128-16141 ; 08885885 (ISSN) Fattahi, M ; Kazemeini, M ; Khorasheh, F ; Rashidi, A. M ; Sharif University of Technology
    2013
    Abstract
    A series of V2O5 catalysts supported on multiwall carbon nanotube (MWCNT), single wall carbon nanotube (SWCNT), and graphene were synthesized by hydrothermal and reflux methods for oxidative dehydrogenation of propane (ODHP) to propylene. The catalysts were characterized by techniques including the BET surface area measurements, XRD, FTIR, H2-TPR, NH3-TPD, FESEM, and UV-vis diffuse reflectance spectroscopy. The performance of the catalysts and the supports were subsequently examined in a fixed bed reactor. The main products were propylene, ethylene and CO x. The vanadium catalyst supported on graphene with C/V molar ratio of 1:1 synthesized through the hydrothermal method had the best... 

    Graphene nanomesh promises extremely efficient in vivo photothermal therapy

    , Article Small ; Volume 9, Issue 21 , 2013 , Pages 3593-3601 ; 16136810 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    Reduced graphene oxide nanomesh (rGONM), as one of the recent structures of graphene with a surprisingly strong near-infrared (NIR) absorption, is used for achieving ultraefficient photothermal therapy. First, by using TiO2 nanoparticles, graphene oxide nanoplatelets (GONPs) are transformed into GONMs through photocatalytic degradation. Then rGONMs functionalized by polyethylene glycol (PEG), arginine-glycine-aspartic acid (RGD)-based peptide, and cyanine 7 (Cy7) are utilized for in vivo tumor targeting and fluorescence imaging of human glioblastoma U87MG tumors having ανβ3 integrin receptors, in mouse models. The rGONM-PEG suspension (1 μg mL -1) exhibits about 4.2- and 22.4-fold higher NIR... 

    Flash photo stimulation of human neural stem cells on graphene/TiO 2 heterojunction for differentiation into neurons

    , Article Nanoscale ; Volume 5, Issue 21 , 2013 , Pages 10316-10326 ; 20403364 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    For the application of human neural stem cells (hNSCs) in neural regeneration and brain repair, it is necessary to stimulate hNSC differentiation towards neurons rather than glia. Due to the unique properties of graphene in stem cell differentiation, here we introduce reduced graphene oxide (rGO)/TiO2 heterojunction film as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons. Using the stimulation, the number of cell nuclei on rGO/TiO2 increased by a factor of ∼1.5, while on GO/TiO2 and TiO2 it increased only ∼48 and 24%, respectively. Moreover, under optimum conditions of flash photo stimulation (10 mW cm-2 flash intensity and 15.0 mM ascorbic acid in... 

    DNA-decorated graphene nanomesh for detection of chemical vapors

    , Article Applied Physics Letters ; Volume 103, Issue 18 , 2013 ; 00036951 (ISSN) Esfandiar, A ; Kybert, N. J ; Dattoli, E. N ; Hee Han, G ; Lerner, M. B ; Akhavan, O ; Irajizad, A ; Charlie Johnson, A. T ; Sharif University of Technology
    2013
    Abstract
    The promise of graphene for use as a vapor sensor motivated exploration of the vapor responses of graphene nanomesh (GNM) functionalized with single stranded DNA. Devices detected different vapor types, including carboxylic acids, aldehydes, organophosphates, and explosives. As-fabricated GNM field effect transistors (FETs) had larger vapor responses than standard graphene FETs due to the effect of oxidized edges and lattice defects. DNA-GNM devices discriminated between homologous species with detection limits of a few parts per million, with fast response and recovery. Responses varied significantly when the base sequence of the DNA was changed, making the sensor class an intriguing... 

    Effect of stone-wales defects on electronic properties of armchair graphene nanoribbons

    , Article 2013 21st Iranian Conference on Electrical Engineering, ICEE 2013 ; 2013 , 14-16 May ; 9781467356343 (ISBN) Samadi, M ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, the effects of Stone-Wales (SW) defect on transport properties of armchair graphene nanoribbons (AGNRs) are studied using tight binding calculations combined with nonequilibrium Green's function (NEGF). We evaluate transmission and density of states (DOS) in two cases, pristine and defective AGNR, and we compare the results. Our results indicate that in the latter case, a larger bandgap is made due to symmetry breaking in GNR layer  

    Spin effect on band structure of zigzag and armchair graphene nanoribbones with Stone-Wales defect

    , Article 2013 21st Iranian Conference on Electrical Engineering ; May , 2013 , Page(s): 1 - 4 ; 9781467356343 (ISBN) Faez, R ; Barami, S ; Sharif University of Technology
    2013
    Abstract
    In this paper the band structure of spin polarized zigzag graphene nanoribbons(ZGNRs) and armchair graphene nanoribons(AGNRs) with Stone-Wales defect are investigated. The results show when the spin effect is considered, the band structures of ZGNRs and AGNRs will be changed and modified. A larger gap will be created and the degenerate bands in ZGNRs will become far from each other. Tight-binding and hubard model were used to simulate the band structures  

    RKKY interaction in heavily vacant graphene

    , Article Journal of Physics Condensed Matter ; Volume 25, Issue 37 , August , 2013 ; 09538984 (ISSN) Habibi, A ; Jafari, S. A ; Sharif University of Technology
    2013
    Abstract
    Dirac electrons in clean graphene can mediate the interactions between two localized magnetic moments. The functional form of the RKKY interaction in pristine graphene is specified by two main features: (i) an atomic-scale oscillatory part determined by a wavevector → connecting the two valleys; with doping another longer range oscillation appears which arises from the existence of an extended Fermi surface characterized by a momentum scale kF; (ii) an algebraic Rα decay in large distances where the exponent α=-3 is a distinct feature of undoped Dirac sea in two dimensions. In this work, we investigate the effect of a few per cent vacancies on the above properties. Depending on the doping... 

    Magnetization of bilayer graphene with interplay between monovacancy in each layer

    , Article Journal of Applied Physics ; Volume 114, Issue 8 , 2013 ; 00218979 (ISSN) Rostami, M ; Faez, R ; Rabiee Golgir, H ; Sharif University of Technology
    2013
    Abstract
    Effects of introducing two monovacancies in bilayer graphene are investigated by using spin-polarized density functional theory. Each layer of bilayer graphene has a monovacancy. Two different classifications are studied, namely, AA and AB. In AA category, vacancies in upper layer and lower layer are chosen from the same sublattices (A or B). However, in AB category, vacancies are selected from the different sublattices (A and B). Two different structures of every classification are examined in order to investigate the effects of two monovacancies on structural, electronic, and magnetic properties of bilayer graphene. Structural optimization reveals that introducing a monovacancy in every... 

    Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons

    , Article Optics Letters ; Volume 38, Issue 16 , 2013 , Pages 3009-3012 ; 01469592 (ISSN) Khavasi, A ; Sharif University of Technology
    2013
    Abstract
    Li's Fourier factorization rules [J. Opt. Soc. Am. A 13, 1870 (1996)] should be applied to achieve a fast convergence rate in the analysis of diffraction gratings with the Fourier modal method. I show, however, that Li's inverse rule cannot be applied for periodic patterns of graphene when the conventional boundary condition is used. I derive an approximate boundary condition in which a nonzero but sufficiently small height is assumed for the boundary. The proposed boundary condition enables us to apply the inverse rule, leading to a significantly improved convergence rate. A periodic array of graphene ribbons is in fact a special type of finite-conductivity strip grating, and thus the... 

    An enhanced continuum modeling of the ideal strength and the angle of twist in tensile behavior of single-walled carbon nanotubes

    , Article Journal of Applied Physics ; Volume 114, Issue 5 , 2013 ; 00218979 (ISSN) Delfani, M. R ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    By utilizing the fourth-, sixth-, eighth-, and tenth-order elastic moduli tensors of graphene a highly nonlinear constitutive model for it is proposed. Subsequently, an accurate analytical formulation, describing the entire tensile behavior of single-walled carbon nanotubes (SWCNTs) from their initial unloaded states through their ideal strengths, is made possible. The angle of twist which is a critical parameter that varies with the tensile loading is also calculated within the current framework. The estimated value of the theoretical strength of SWCNTs with different chiralities and radii as well as that of graphene ranges from 0.39 to 0.44 TPa. Some peculiarities associated with chirality... 

    Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells

    , Article Carbon ; Volume 59 , 2013 , Pages 200-211 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Shahsavar, M ; Sharif University of Technology
    2013
    Abstract
    Graphene nanogrids (fabricated by graphene nanoribbons obtained through oxidative unzipping of multi-walled carbon nanotubes) were used as two-dimensional selective templates for accelerated differentiation of human mesenchymal stem cells (hMSCs), isolated from umbilical cord blood, into osteogenic lineage. The biocompatible and hydrophilic graphene nanogrids showed high actin cytoskeleton proliferations coinciding with patterns of the nanogrids. The amounts of proliferations were found slightly better than proliferation on hydrophilic graphene oxide (GO) sheets, and significantly higher than non-uniform proliferations on hydrophobic reduced graphene oxide (rGO) sheets and... 

    Visible light-induced photocatalytic reduction of graphene oxide by tungsten oxide thin films

    , Article Applied Surface Science ; Volume 276 , 2013 , Pages 628-634 ; 01694332 (ISSN) Choobtashani, M ; Akhavan, O ; Sharif University of Technology
    2013
    Abstract
    Tungsten oxide thin films (deposited by thermal evaporation or sol gel method) were used for photocatalytic reduction of graphene oxide (GO) platelets (synthesized through a chemical exfoliation method) on surface of the films under UV or visible light of the environment, in the absence of any aqueous ambient at room temperature. Atomic force microscopy (AFM) technique was employed to characterize surface morphology of the GO sheets and the tungsten oxide films. Moreover, using X-ray photoelectron spectroscopy (XPS), chemical state of the tungsten oxide films and the photocatalytic reduction of the GO platelets were quantitatively investigated. The better performance of the sol-gel tungsten...