Loading...
Search for: graphene
0.013 seconds
Total 884 records

    Analysis of neutral triplet spin-1 mode in doped graphene

    , Article International Journal of Modern Physics B ; Volume 26, Issue 21 , 2012 ; 02179792 (ISSN) Ebrahimkhas, M ; Jafari, S. A ; Baskaran, G ; Sharif University of Technology
    2012
    Abstract
    Particle-hole continuum in Dirac sea of graphene has a unique window. It has been predicted to support a long lived neutral triplet gapless bosoinc mode that disperses over a wide energy range in entire Brillouin zone. In this work, using a repulsive Hubbard model, we study the fate of such collective mode at zero temperature, in a single layer of graphene doped with electrons or holes. Doping modifies the particle-hole continuum and creates additional windows for momenta around wave-vectors q+Q i, i = 1, 2 connecting various Dirac cones. We find that, overlap factors are crucial for doped graphene. These factors push the collective mode inside the intra-band part of the continuum for... 

    Collective excitations and the nature of Mott transition in undoped gapped graphene

    , Article Journal of Physics Condensed Matter ; Volume 24, Issue 30 , 2012 ; 09538984 (ISSN) Jafari, S. A ; Sharif University of Technology
    Abstract
    The particle-hole continuum (PHC) for massive Dirac fermions provides an unprecedented opportunity for the formation of two collective split-off states, one in the singlet and the other in the triplet (spin-1) channel, when the short-range interactions are added to the undoped system. Both states are close in energy and are separated from the continuum of free particle-hole excitations by an energy scale of the order of the gap parameter Δ. They both disperse linearly with two different velocities, reminiscent of spin-charge separation in Luttinger liquids. When the strength of Hubbard interactions is stronger than a critical value, the velocity of singlet excitation, which we interpret as a... 

    Methane molecule over the defected and rippled graphene sheet

    , Article Solid State Communications ; Volume 152, Issue 15 , August , 2012 , Pages 1493-1496 ; 00381098 (ISSN) Shayeganfar, F ; Neek Amal, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Adsorption of a methane molecule (CH 4) onto a defected and rippled graphene sheet is studied using ab initio and molecular mechanics calculations. The optimal adsorption position and orientation of this molecule on the graphene surface (motivated by the recent realization of graphene sensors to detect individual gas molecules) is determined and the adsorption energies are calculated. In light of the density of states, we used the SIESTA code. It is found that (i) classical force field yields adsorption energy comparable with experimental result and ab initio calculation; (ii) the periodic nature of the van der Waals potential energy stored between methane and perfect sheet is altered due to... 

    The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy

    , Article Journal of Materials Chemistry ; Volume 22, Issue 27 , 2012 , Pages 13773-13781 ; 09599428 (ISSN) Akhavan, O ; Ghaderi, E ; Aghayee, S ; Fereydooni, Y ; Talebi, A ; Sharif University of Technology
    RSC  2012
    Abstract
    A single-step green method for effective reduction and functionalization of graphene oxide (GO) by glucose was developed. Then, efficacy of the glucose-reduced GO sheets in photothermal therapy of LNCaP prostate cancer cells was investigated in vitro. The GO suspension reduced and functionalized by glucose in the presence of Fe catalyst showed a biocompatible property with an excellent near-infrared (NIR) photothermal therapy efficiency better than hydrazine-reduced GO, single-wall and multi-wall carbon nanotube suspensions which even showed some levels of toxicities. For complete destruction of the cancer cells at some time intervals of NIR irradiation (e.g., 0.5 and 12 min with a power... 

    Thermal conductivity of polyamide-6,6 in the vicinity of charged and uncharged graphene layers: A molecular dynamics analysis

    , Article Journal of Physical Chemistry C ; Volume 116, Issue 26 , May , 2012 , Pages 14115-14122 ; 19327447 (ISSN) Alaghemandi, M ; Gharib-Zahedi, M. R ; Spohr, E ; Böhm, M. C ; Sharif University of Technology
    2012
    Abstract
    The thermal conductivity (λ) of nanoconfined polyamide-6,6 (PA) oligomers in polymer-graphene nanocomposites has been investigated by reverse nonequilibrium molecular dynamics (RNEMD) simulations. The preferential alignment of the PA chains parallel to the graphene plane as well as their elongation implies that λ of the polymer in nanocomposites is larger than that in the neat polymer system. The ordering of the polymer phase is enhanced in an arrangement of charged graphene surfaces made of one layer with a charge deficit and one with a charge excess. The consequence of the enhanced polymer ordering as well as the denser packing is an increase in λ in the polymer network. Differences in the... 

    Dynamic and static fracture analyses of graphene sheets and carbon nanotubes

    , Article Composite Structures ; Volume 94, Issue 8 , 2012 , Pages 2365-2372 ; 02638223 (ISSN) Niaki, S. A ; Mianroodi, J. R ; Sadeghi, M ; Naghdabadi, R ; Sharif University of Technology
    2012
    Abstract
    Dynamic and static fracture properties of Graphene Sheets (GSs) and Carbon nanotubes (CNTs) with different sizes are investigated based on an empirical inter-atomic potential function that can simulate nonlinear large deflections of nanostructures. Dynamic fracture of GSs and CNTs are studied based on wave propagation analysis in these nanostructures in a wide range of strain-rates. It is shown that wave propagation velocity is independent from strain-rate while dependent on the nanostructure size and approaches to 2.2×10 4m/s for long GSs. Also, fracture strain shows extensive changes versus strain-rate, which has not been reported before. Fracture stress is determined as 115GPa for GSs and... 

    Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide

    , Article Carbon ; Volume 50, Issue 8 , 2012 , Pages 3015-3025 ; 00086223 (ISSN) Akhavan, O ; Kalaee, M ; Alavi, Z. S ; Ghiasi, S. M. A ; Esfandiar, A ; Sharif University of Technology
    2012
    Abstract
    An easy method for green and low-temperature (40 °C) reduction of graphene oxide (GO) by increasing the antioxidant activity of green tea polyphenols (GTPs) in the presence of iron was developed. The reduction level (obtained by X-ray photoelectron spectroscopy) and electrical conductivity (obtained by current-voltage measurement) of the GO sheets reduced by GTPs in the presence of iron were comparable to those of hydrazine-reduced GO and much better than those of the GO reduced by only GTPs (in the absence of iron) at reduction temperatures of 40-80 °C. Raman spectroscopy indicated that application of GTPs in the presence of iron, in contrast to hydrazine, resulted in better recovering of... 

    Nonlinear optical response in gapped graphene

    , Article Journal of Physics Condensed Matter ; Volume 24, Issue 20 , 2012 ; 09538984 (ISSN) Jafari, S. A ; Sharif University of Technology
    2012
    Abstract
    We present a formulation for the nonlinear optical response in gapped graphene, where the low-energy single-particle spectrum is modeled by massive Dirac theory. As a representative example of the formulation presented here, we obtain a closed form formula for the third harmonic generation in gapped graphene. It turns out that the covariant form of the low-energy theory gives rise to peculiar logarithmic singularities in the nonlinear optical spectra. The universal functional dependence of the response function on dimensionless quantities indicates that the optical nonlinearity can be largely enhanced by tuning the gap to smaller values  

    Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation

    , Article Journal of Physical Chemistry C ; Volume 116, Issue 17 , 2012 , Pages 9653-9659 ; 19327447 (ISSN) Akhavan, O ; Choobtashani, M ; Ghaderi, E ; Sharif University of Technology
    2012
    Abstract
    Graphene-tungsten oxide composite thin films with sheetlike surface morphology were fabricated and applied in photoinactivation of viruses under visible light irradiation. Using X-ray photoelectron spectroscopy, it was found that the chemically exfoliated graphene oxide sheets incorporated in the tungsten oxide film reduced through a visible light photocatalytic reduction. In addition, annealing the films at 450 °C in air resulted in formation of W-C and W-O-C bonds to obtain graphene-tungsten oxide composite films. The composite films fabricated by this method showed an excellent visible light photocatalytic performance in photoinactivation of bacteriophage MS2 viruses, as compared to... 

    Toward single-DNA electrochemical biosensing by graphene nanowalls

    , Article ACS Nano ; Volume 6, Issue 4 , March , 2012 , Pages 2904-2916 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Rahighi, R ; Sharif University of Technology
    2012
    Abstract
    Graphene oxide nanowalls with extremely sharp edges and preferred vertical orientation were deposited on a graphite electrode by using electrophoretic deposition in an Mg 2+-GO electrolyte. Using differential pulse voltammetry (DPV), reduced graphene nanowalls (RGNWs) were applied for the first time, in developing an ultra-high-resolution electrochemical biosensor for detection of the four bases of DNA (G, A, T, and C) by monitoring the oxidation signals of the individual nucleotide bases. The extremely enhanced electrochemical reactivity of the four free bases of DNA, single-stranded DNA, and double-stranded DNA (dsDNA) at the surface of the RGNW electrode was compared to electrochemical... 

    Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner

    , Article Carbon ; Volume 50, Issue 5 , 2012 , Pages 1853-1860 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2012
    Abstract
    Interactions of chemically exfoliated graphene oxide (GO) nanosheets and Escherichia coli bacteria living in mixed-acid fermentation with an anaerobic condition were investigated for different exposure times. X-ray photoelectron spectroscopy showed that as the exposure time increased (from 0 to 48 h), the oxygen-containing functional groups of the GO decreased by ∼60%, indicating a relative chemical reduction of the sheets by interaction with the bacteria. Raman spectroscopy and current-voltage measurement confirmed the reduction of the GO exposed to the bacteria. The reduction was believed to be due to the metabolic activity of the surviving bacteria through their glycolysis process. It was... 

    Equations-of-motion method for triplet excitation operators in graphene

    , Article Journal of Physics Condensed Matter ; Volume 24, Issue 9 , February , 2012 ; 09538984 (ISSN) Jafari, S. A ; Baskaran, G ; Sharif University of Technology
    2012
    Abstract
    The particlehole continuum in the Dirac sea of graphene has a unique window underneath, which in principle leaves room for bound state formation in the triplet particlehole channel (Baskaran and Jafari 2002 Phys. Rev. Lett. 89 016402). In this work, we construct appropriate triplet particlehole operators and, using a repulsive Hubbard-type effective interaction, we employ equations of motion to derive approximate eigenvalue equations for such triplet operators. While the secular equation for the spin density fluctuations gives rise to an equation which is second order in the strength of the short range interaction, the explicit construction of the triplet operators obtained here shows that,... 

    Time domain analysis of graphene nanoribbon interconnects based on transmission line model

    , Article Iranian Journal of Electrical and Electronic Engineering ; Volume 8, Issue 1 , Dec , 2012 , Pages 37-44 ; 17352827 (ISSN) Nasiri, S. H ; Moravvej-Farshi, M. K ; Faez, R ; Sharif University of Technology
    Abstract
    Time domain analysis of multilayer graphene nano ribbon (MLGNR) interconnects, based on transmission line modeling (TLM) using a six-order linear parametric expression, has been presented for the first time. We have studied the effects of interconnect geometry along with its contact resistance on its step response and Nyquist stability. It is shown that by increasing interconnects dimensions their propagation delays are increased and accordingly the system becomes relatively more stable. In addition, we have compared time responses and Nyquist stabilities of MLGNR and SWCNT bundle interconnects, with the same external dimensions. The results show that under the same conditions, the... 

    Free vibrations of single-walled carbon nanotubes in the vicinity of a fully constrained graphene sheet

    , Article Computational Materials Science ; Volume 53, Issue 1 , 2012 , Pages 12-17 ; 09270256 (ISSN) Firouz Abadi, R. D ; Hosseinian, A. R ; Sharif University of Technology
    2012
    Abstract
    Carbon nanotubes (CNTs) have been recently taken into consideration as mechanical resonators of distinguished capabilities. This study aims at investigating the free vibration characteristics of a single-walled CNT in the vicinity of a fully constrained graphene sheet. Using a molecular structural mechanics model and considering nonlinear van-der-Waals interactions, the static deformation of the nanotube is obtained using an iterative procedure. Then, the governing equations of motion are linearized about the static equilibrium state and the natural frequencies are obtained. The molecular structural mechanics model is verified using established results in literature and then a survey is... 

    Van der Waals energy surface of a carbon nanotube sheet

    , Article Solid State Communications ; Volume 152, Issue 3 , February , 2012 , Pages 225-230 ; 00381098 (ISSN) Motahari, S ; Shayeganfar, F ; Neek Amal, M ; Sharif University of Technology
    Abstract
    The van der Walls interaction between a carbon nanotube sheet (CNTS) and a rare gas atom, is studied using both atomistic and continuum approaches. We present analytical expressions for the van der Waals energy of continuous nanotubes interacting with a rare gas atom. It is found that the continuum approach does not properly treat the effect of atomistic configurations on the energy surfaces. The energy barriers are small as compared to the thermal energy, which implies the free motion above the CNTS in heights about one nanometer. In contrast to the energy surface of a graphene sheet, the honeycomb lattice structure in the energy surface of a CNTS is imperceivable. Defects alter the energy... 

    Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons

    , Article Journal of Applied Physics ; Volume 111, Issue 5 , 2012 ; 00218979 (ISSN) Karamitaheri, H ; Neophytou, N ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2012
    Abstract
    We theoretically investigate the thermoelectric properties of zigzag graphene nanoribbons in the presence of extended line defects, substrate impurities, and edge roughness along the nanoribbon's length. A nearest-neighbor tight-binding model for the electronic structure and a fourth nearest-neighbor force constant model for the phonon bandstructure are used. For transport, we employ quantum mechanical non-equilibrium Green's function simulations. Starting from the pristine zigzag nanoribbon structure that exhibits very poor thermoelectric performance, we demonstrate how after a series of engineering design steps the performance can be largely enhanced. Our results could be useful in the... 

    Assembly of CeO 2-TiO 2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants

    , Article Journal of Hazardous Materials ; Volume 199-200 , 2012 , Pages 170-178 ; 03043894 (ISSN) Ghasemi, S ; Setayesh, S. R ; Habibi Yangjeh, A ; Hormozi Nezhad, M. R ; Gholami, M. R ; Sharif University of Technology
    2012
    Abstract
    CeO 2-TiO 2 nanoparticles were prepared by the sol-gel process using 2-hydroxylethylammonium formate as room-temperature ionic liquid and calcined at different temperatures (500-700°C). CeO 2-TiO 2-graphene nanocomposites were prepared by hydrothermal reaction of graphene oxide with CeO 2-TiO 2 nanoparticles in aqueous solution of ethanol. The photocatalysts were characterized by X-ray diffraction, BET surface area, diffuse reflectance spectroscopy, scanning electron microscopy, and Fourier transformed infrared techniques. The results demonstrate that the room-temperature ionic liquid inhibits the anatase-rutile phase transformation. This effect was promoted by addition of CeO 2 to TiO 2.... 

    Compact formulae for number of conduction channels in various types of graphene nanoribbons at various temperatures

    , Article Modern Physics Letters B ; Volume 26, Issue 1 , 2012 ; 02179849 (ISSN) Nasiri, S. H ; Faez, R ; Moravvej Farshi, M. K ; Sharif University of Technology
    Abstract
    We present two compact analytic formulae for calculating the channel number in graphene nanoribbons (GNRs), in terms of GNRs' width and Fermi energy. Numerical data obtained from these analytic formulae fit those obtained numerically from the exact formula, with accuracies within 1%. Using appropriate fit parameters, the compact formulae are valid for zigzag, armchair-metallic, and armchair-semiconducting GNRs, at room, liquid nitrogen, and liquid helium temperatures (i.e. 300, 77 and 4.2 K)  

    An investigation of ZGNR-based transistors

    , Article 2011 International Semiconductor Device Research Symposium, ISDRS 2011, 7 December 2011 through 9 December 2011 ; December , 2011 , Page(s): 1 - 2 ; 9781457717550 (ISBN) Karamitaheri, H ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2011
    Abstract
    Graphene, a recently discovered form of carbon, has received much attention for possible applications in nanoelectronics, due to its excellent carrier transport properties [1]. Graphene nanoribbons (GNRs) are thin strips of graphene, where the electronic properties depend on the chirality of the edge and the width of the ribbon. Zigzag GNRs (ZGNRs) show metalic behavior, whereas armchair GNRs (AGNRs) are semiconductors and their band-gap is inversely proportional to their width [2]. Therefore, narrow AGNRs have been recently suggested as a material for transistor channels. However, line edge roughness and substrate impurities can significantly degrade the ballistic transport in AGNRs,... 

    Photo-destruction of cancer cells by NIR irradiation and graphene nano-sheets

    , Article Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011, 13 June 2011 through 16 June 2011, Boston, MA ; Volume 3 , 2011 , Pages 236-239 ; 9781439871386 (ISBN) Abdolahad, M ; Mohajerzadeh, S ; Janmaleki, M ; Akhavan, O ; Azimi, S ; Clean Technology and Sustainable Industries Organization (CTSI); European Patent Office; Greenberg Traurig; Innovation and Materials Science Institute; Jackson Walker L.L.P ; Sharif University of Technology
    2011
    Abstract
    The photo-thermal therapy using nano-materials has attracted great attention as an efficient strategy for the next generation of cancer treatments. Recently, photo-thermal therapy based on nano-materials that can be activated by a skin-penetrating NIR (Near Infra Red) irradiation has been suggested as a noninvasive, harmless, and highly efficient therapeutic technique. Graphene nano-layers synthesized by a bio-compatible method, with reduced toxicity, will be a suitable candidate for the photo-thermal therapeutic agent. A significant amount of heat is generated upon excitation with near-infrared light (NIR, 700-1100nm) which is transparent to biological species including skins. In this...