Loading...
Search for: graphite
0.009 seconds
Total 210 records

    Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid

    , Article Electrochimica Acta ; Volume 55, Issue 28 , 2010 , Pages 9090-9096 ; 00134686 (ISSN) Shahrokhian, S ; Khafaji, M ; Sharif University of Technology
    2010
    Abstract
    A novel modified pyrolytic graphite electrode with nano-diamond/graphite was fabricated. The electrochemical response characteristics of the modified electrode toward the epinephrine (EN) and uric acid (UA) were studied by means of cyclic and linear sweep voltammetry. The structural morphology and thickness of the film was characterized by SEM technique. The prepared electrode showed an excellent catalytic activity in the electrochemical oxidation of EN and UA, leading to remarkable enhancements in the corresponding peak currents and lowering the peak potentials. The prepared modified electrode acts as a highly sensitive sensor for simultaneous determination of EN and UA in the presence of... 

    Empirical comparison of sliding friction and wear behaviors of gray and white cast iron

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 1 , 2010 , Pages 489-493 ; 9780791849156 (ISBN) Hashemi, M ; Ghajar, R ; Sharif University of Technology
    2010
    Abstract
    In this paper, sliding friction and wear behaviors of gray cast iron A35 and white cast iron manufactured by quenching from the same cast iron in water were studied and compared by employing pin-on-disk wear tests. Microstructure of the worn surfaces before and after the wear tests were investigated by optical microscope observations. These images show that flakes separated from the surface in gray cast iron due to delamination process, while in white cast iron, the separation of materials from its surface is in the form of powder. In addition, the gray cast iron had higher graphite volume fraction with Type-A graphite flake morphology. The results show that white cast iron has less rate of... 

    The effect of varient heat treatment cycles on controlled surface graphitization in CK45 steel

    , Article TMS Annual Meeting, 14 February 2010 through 18 February 2010 ; 2010 , Pages 59-70 ; 9781617822933 (ISBN) Kiani Rashid, A. R ; Hamedi, Y ; Shishegar, H. R ; Sharif University of Technology
    Abstract
    Controlled graphitization has become known as a practical method for improvement of wear resistance and machining properties in steels. In this paper, the effect of heat treatment on microstructure of CK45 steel has been investigated. Austenitising was carried out at 920°C for 5 hours. Besides, isothermal transformation was conducted at 750°C in the time range of 1-20 hours. The microstructure of the steel considerably changes by this heat treatment process which exhibits the effects of temperature, appropriate austenitising duration and isothermal transformation. Conducted experiments show a suitable distribution of semi-spherical graphite particles especially on the surface of the steel.... 

    As-cast microstructures of aluminium containing ductile cast iron

    , Article TMS Annual Meeting, 14 February 2010 through 18 February 2010, Seattle, WA ; 2010 , Pages 37-47 ; 9781617822933 (ISBN) Kiani Rashid, A. R ; Shayesteh Zeraati, A ; Naser Zoshki, H ; Yousef Sani, M. R ; Sharif University of Technology
    2010
    Abstract
    In this paper, the effect of aluminum content on the formation mechanism, volume fraction, morphology and particle size distribution of graphite has been investigated. Addition of aluminum on ductile iron causes some fundamental changes in iron-carbon phase-diagram and as a result, improves the graphite formation during eutectic transformation. The results reveals that aluminum compounds have been formed in the core of graphite nodules, thus aluminum plays an important role in the formation of graphite nodules. Furthermore, it is indicated that an increase in the aluminum content also leads to an increase in the number of graphite nodules and a decrease in the nodules size. By using EPMA,... 

    Toxicity of graphene and graphene oxide nanowalls against bacteria

    , Article ACS Nano ; Volume 4, Issue 10 , October , 2010 , Pages 5731-5736 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2010
    Abstract
    Bacterial toxicity of graphene nanosheets in the form of graphene nanowalls deposited on stainless steel substrates was investigated for both Gram-positive and Gram-negative models of bacteria. The graphene oxide nanowalls were obtained by electrophoretic deposition of Mg2+-graphene oxide nanosheets synthesized by a chemical exfoliation method. On the basis of measuring the efflux of cytoplasmic materials of the bacteria, it was found that the cell membrane damage of the bacteria caused by direct contact of the bacteria with the extremely sharp edges of the nanowalls was the effective mechanism in the bacterial inactivation. In this regard, the Gram-negative Escherichia coli bacteria with an... 

    Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction

    , Article Journal of Physical Chemistry C ; Volume 114, Issue 30 , July , 2010 , Pages 12955-12959 ; 19327447 (ISSN) Akhavan, O ; Abdolahad, M ; Esfandiar, A ; Mohatashamifar, M ; Sharif University of Technology
    2010
    Abstract
    TiO2 nanoparticles were physically attached to chemically synthesized single-layer graphene oxide nanosheets deposited between Au electrodes in order to investigate the electrical, chemical, and structural properties of the TiO2/graphene oxide composition exposed to UV irradiation. X-ray photoelectron spectroscopy showed that after effective photocatalytic reduction of the graphene oxide sheets by the TiO2 nanoparticles in ethanol, the carbon content of the reduced graphene oxides gradually decreased by increasing the irradiation time, while no considerable variation was detected in the reduction level of the reduced sheets. Raman spectroscopy indicated that, at first, the photocatalytic... 

    Density functional theory prediction for oxidation and exfoliation of graphite to graphene

    , Article Applied Surface Science ; Volume 256, Issue 24 , 2010 , Pages 7596-7599 ; 01694332 (ISSN) Rasuli, R ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    A density functional theory (DFT) study of graphene synthesis from graphite oxidation and exfoliation is presented. The calculated DFT results for O adsorption predict CO as a most stable bond on the graphene oxide (GO) sheet. The obtained exfoliation energy for the graphene and the GO are 143 and ∼70 mJ/m2 that verify easier exfoliation of the graphite oxide compared with the graphite. Furthermore, the DFT results show that for decreasing the exfoliation energy of the GO at least two layers of the graphite should be oxidized during the oxidation process  

    Graphene nanomesh by ZnO nanorod photocatalysts

    , Article ACS Nano ; Volume 4, Issue 7 , 2010 , Pages 4174-4180 ; 19360851 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    Local photodegradation of graphene oxide sheets at the tip of ZnO nanorods was used to achieve semiconducting graphene nanomeshes. The chemically exfoliated graphene oxide sheets, with a thickness of ∼0.9 nm, were deposited on quartz substrates. Vertically aligned ZnO nanorod arrays with diameters of 140 nm and lengths of <1 μm were grown on a glass substrate by using a hydrothermal method. The graphene oxide sheets were physically attached to the tip of the ZnO nanorods by assembling the sheets on the nanorods. UV-assisted photodegradation of the graphene oxide sheets (with dimension of ∼5 × 5 μm) at a contact place with the ZnO nanorods resulted in graphene nanomeshes with a pore size of... 

    Effect of mechanical milling on carbothermic reduction of magnesia

    , Article ISIJ International ; Volume 50, Issue 5 , 2010 , Pages 668-672 ; 09151559 (ISSN) Nusheh, M ; Yoozbashizadeh, H ; Askari, M ; Kuwata, N ; Kawamura, J ; Kano, J ; Saito, F ; Kobatake, H ; Fukuyama, H ; Sharif University of Technology
    2010
    Abstract
    A mixture of MgO and graphite with a molar ratio (1:1) was subjected to planetary ball milling for 1, 2, 4, and 8 h with the intention of enhancing carbothermic reduction reaction of MgO during subsequent thermal treatment. Unmilled and milled mixtures were characterized using a combination of X-ray diffraction (XRD) analysis, Raman spectroscopy, scanning electron microscopy (SEM), surface area analysis (SSA), and thermogravimetric analysis (TGA). The reduction reaction of milled samples occurred at lower temperature than that of the unmilled sample. A longer milling time engenders a lower reaction temperature. These results are attributable to the increased interfacial area of the sample... 

    The effects of multi-walled carbon nanotubes graphitization treated with different atmospheres and electrolyte temperatures on electrochemical hydrogen storage

    , Article Electrochimica Acta ; Volume 55, Issue 16 , June , 2010 , Pages 4700-4705 ; 00134686 (ISSN) Reyhani, A ; Nozad Golikand, A ; Mortazavi, S. Z ; Irannejad, L ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    Using multi-walled carbon nanotubes (MWCNTs), the present study focuses on their electrochemical hydrogen storage capacities. The results showed that the hydrogen desorption process is composed of two steps with voltages around -0.75 and -0.15 V. Hydrogen adsorption at -0.15 V took place at temperatures above 30 °C, and the amount of energy required for adsorbing hydrogen was 1.68 eV. The hydrogen storage capacity increased with increasing electrolyte temperature from 30 to 60 °C in both steps. The hydrogen storage capacity of the MWCNTs treated at different atmospheres showed that the decrease in the graphitization of MWCNTs led to the increase in hydrogen adsorption. The results also... 

    Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    , Article Journal of Alloys and Compounds ; Volume 500, Issue 1 , June , 2010 , Pages 74-77 ; 09258388 (ISSN) Sharif, M ; Faghihi Sani, M. A ; Golestani Fard, F ; Saberi, A ; Soltani, A. K ; Sharif University of Technology
    2010
    Abstract
    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 °C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite... 

    Irreversibility in response to forces acting on graphene sheets

    , Article Physical Review Letters ; Volume 104, Issue 19 , May , 2010 ; 00319007 (ISSN) Abedpour, N ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
    2010
    Abstract
    The amount of rippling in graphene sheets is related to the interactions with the substrate or with the suspending structure. Here, we report on an irreversibility in the response to forces that act on suspended graphene sheets. This may explain why one always observes a ripple structure on suspended graphene. We show that a compression-relaxation mechanism produces static ripples on graphene sheets and determine a peculiar temperature Tc, such that for T

    Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory

    , Article Nanotechnology ; Volume 21, Issue 18 , 2010 ; 09574484 (ISSN) Rasuli, R ; Iraji Zad, A ; Ahadian, M. M ; Sharif University of Technology
    2010
    Abstract
    We have studied the mechanical properties of a few-layer graphene cantilever (FLGC) using atomic force microscopy (AFM). The mechanical properties of the suspended FLGC over an open hole have been derived from the AFM data. Force displacement curves using the Derjaguin-Müller-Toporov (DMT) and the massless cantilever beam models yield a Young modulus of Ec ∼ 37, Ea ∼ 0.7TPa and a Hamakar constant of ∼ 3 × 10 -18J. The threshold force to shear the FLGC was determined from a breaking force and modeling. In addition, we studied a graphene nanoribbon (GNR), which is a system similar to the FLGC; using density functional theory (DFT). The in-plane Young's modulus for the GNRs were calculated from... 

    Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    , Article Electrochimica Acta ; Volume 55, Issue 11 , 2010 , Pages 3621-3627 ; 00134686 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Sharif University of Technology
    2010
    Abstract
    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental... 

    Nanostructured silver fibers: Facile synthesis based on natural cellulose and application to graphite composite electrode for oxygen reduction

    , Article International Journal of Hydrogen Energy ; Volume 35, Issue 8 , 2010 , Pages 3258-3262 ; 03603199 (ISSN) Sharifi, N ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Abstract
    The development of cheaper electrocatalysts for fuel cells is an important research area. This work proposes a new, simpler and low-cost approach to develop nanostructured silver electrocatalysts by using natural cellulose as a template. Silver was deposited by reduction of Ag complexes on the surface of cellulose fibers, followed by heat removal of the template to create self-standing nanostructured silver fibers (NSSFs). X-Ray diffraction (XRD) showed fcc silver phase and X-Ray photoelectron spectroscopy (XPS) demonstrated that the surface was partially oxidized. The morphology of the fibers consisted of 50 nm nanoparticles as the building blocks, and they possessed a specific surface area... 

    Effect of a gap opening on the conductance of graphene superlattices

    , Article Solid State Communications ; Volume 150, Issue 13-14 , 2010 , Pages 655-659 ; 00381098 (ISSN) Esmailpour, M ; Esmailpour, A ; Asgari, R ; Elahi, M ; Rahimi Tabar, M. R ; Sharif University of Technology
    2010
    Abstract
    The electronic transmission and conductance of a gapped graphene superlattice were calculated by means of the transfer-matrix method. The system that we study consists of a sequence of electron-doped graphene as wells and hole-doped graphene as barriers. We show that the transmission probability approaches unity at some critical value of the gap. We also find that there is a domain around the critical gap value for which the conductance of the system attains its maximum value  

    The influence of different heat treatment cycles on controlled surface graphitization in CK45 steel

    , Article Journal of Alloys and Compounds ; Volume 492, Issue 1-2 , 2010 , Pages 739-744 ; 09258388 (ISSN) Hamedi, Y ; Kiani Rashid, A. R ; Shishegar, H. R ; Azaat Pour, H. R ; Sharif University of Technology
    Abstract
    Controlled graphitization has become known as a practical method for improvement of wear resistance and machining properties in steels. In this paper, the effect of heat treatment on microstructure of CK45 steel has been investigated. Austenitising was carried out at 920 °C for 5 h. Besides, isothermal transformation was conducted at 750 °C in the time range of 1-20 h. In this work, full potential carbon resource was tried to be used around samples as a factor to prevent the burning of the limited carbon in steel and also to increase the percentage of sample surface carbon in order to improve wear capability and machining. The microstructure of the steel considerably changes by this heat... 

    Nonlinear vibrational analysis of single-layer graphene sheets

    , Article Nanotechnology ; Volume 21, Issue 10 , 2010 ; 09574484 (ISSN) Sadeghi, M ; Naghdabadi, R ; Sharif University of Technology
    2010
    Abstract
    Recent experiments have shown the applicability of single-layer graphene sheets (SLGSs) as electromechanical resonators. Existing theoretical models, based on linear continuum or atomistic methods, are limited to the study of linear vibrations of SLGSs. Here we introduce a hybrid atomistic-structural element which is capable of modelling nonlinear behaviour of graphene sheets. This hybrid element is based on an empirical inter-atomic potential function and can model the nonlinear dynamic response of SLGSs. Using this element, nonlinear vibrational analysis of SLGSs is performed. It is shown that the nonlinear vibrational analysis of SLGSs predicts significantly higher fundamental... 

    Electrooxidation of methanol on NiMn alloy modified graphite electrode

    , Article Electrochimica Acta ; Volume 55, Issue 6 , 2010 , Pages 2093-2100 ; 00134686 (ISSN) Danaee, I ; Jafarian, M ; Mirzapoor, A ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    Abstract
    Nickel and nickel-manganese alloy modified graphite electrodes (G/Ni and G/NiMn) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetery (CV), chronoamperometry (CA) and impedance spectroscopy (EIS) were employed. In CV studies, in the presence of methanol NiMn alloy modified electrode shows a significantly higher response for methanol oxidation. The peak current of the oxidation of nickel hydroxide increase is followed by a decrease in the corresponding cathodic current in presence of methanol. The anodic peak currents show linear dependency upon the... 

    The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets

    , Article Carbon ; Volume 48, Issue 2 , February , 2010 , Pages 509-519 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    Graphene thin films with very low concentration of oxygen-containing functional groups were produced by reduction of graphene oxide nanosheets (prepared by using a chemical exfoliation) in a reducing environment and using two different heat treatment procedures (called one and two-step heat treatment procedures). The effects of heat treatment procedure and temperature on thickness variation of graphene platelets and also on reduction of the oxygen-containing functional groups of the graphene oxide nanosheets were studied by atomic force microscopy and X-ray photoelectron spectroscopy. While formation of the thin films composed of single-layer graphene nanosheets with minimum thickness of...