Loading...
Search for: heating
0.012 seconds
Total 1786 records

    A review of concentric annular heat pipes

    , Article Heat Transfer Engineering ; Volume 26, Issue 6 , 2005 , Pages 45-58 ; 01457632 (ISSN) Nouri Borujerdi, A ; Layeghi, M ; Sharif University of Technology
    2005
    Abstract
    A detailed description of a concentric annular heat pipe (CAHP) operation is presented in low to moderate temperature ranges (50-200°C). The steady-state response of a CAHP to various heat fluxes in the evaporator and condenser sections are discussed. Two-dimensional mathematical modeling of the fluid flow and heat transfer in the annular vapor space and the wicks are described. The fundamental aspects and limitations of the operation of a CAHP are also discussed. Previously used numerical and experimental approaches for the analysis of the CAHPs and some related concepts are reviewed. The Navier-Stokes and similar equations are recommended for the simulation of fluid flow and heat transfer... 

    Transient heat transfer analysis of a layer by considering the effect of radiation

    , Article Journal of Fusion Energy ; Volume 23, Issue 3 , 2005 , Pages 207-215 ; 01640313 (ISSN) Sharbati, E ; Safavisohi, B ; Aghanajafi, C ; Sharif University of Technology
    2005
    Abstract
    The transient heat transfer analysis of a layer has been studied much less than the steady state. However, transient temperature distribution resulted from including radiation and conduction simultaneously, is significantly different from those obtained by considering conduction alone. In order to include the effect of radiation heat transfer, we must insert the gradient of radiative flux in the energy equation. For this purpose, a variety of multi-flux methods have been suggested. A simplified procedure is the two-flux method, which is the one used in the present paper. This paper is focused on one-dimensional transient heat transfer of a layer using Finite Difference Method. To this end, a... 

    Stationary states of open XX -spin chains

    , Article Physical Review A ; Volume 106, Issue 6 , 2022 ; 24699926 (ISSN) Benatti, F ; Floreanini, R ; Memarzadeh, L ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    We study an open quantum spin chain of arbitrary length with nearest neighbor XX interactions of strength g, immersed in an external constant magnetic field Δ along the z direction, whose end spins are weakly coupled to two heat baths at different temperatures. In the so-called global approach, namely, without neglecting interspin interactions, using standard weak-coupling limit techniques, we first derive the open chain master equation written in terms of fermionic mode operators. Then, we focus on the study of the dependence of the resulting open dynamics from the ratio rg/Δ. By increasing r, some of the chain Bohr transition frequencies become negative; when this occurs, both the... 

    Sensitivity and Optimal Design for a CCHPW System for Extremely Hot and Humid Area

    , M.Sc. Thesis Sharif University of Technology Sabet, Siavash (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Zabihollah, Abolghasem (Supervisor)
    Abstract
    Considering problems related to energy, including high fuel prices, increasing demand, constraints, and environmental pollution, makes it clear that efficiency is one of the major problems in all over the world. Iran’s southern parts and those countries around Persian Gulf face serious shortage of drinking water. Moreover, on top of the other three types of energy production the need for drinking water is highly sensible. Therefore, the use of CCHPW System is the best solution in these areas. The purpose of this design is to empower the control capability of the combined systems over all factors and apply the necessary changes under different conditions. This endeavor requires a program to... 

    Meson Thermalizationin AdS/CFT Correspondence

    , M.Sc. Thesis Sharif University of Technology Rajaee, Meshkat (Author) ; Arfaie, Hesameddin (Supervisor) ; Ali-Akbari, Mohammad (Supervisor)
    Abstract
    AdS/CFT correspondence is a suitable framework for studying strongly coupled gauge theories. It corresponds a strongly coupled gauge theory to a classical gravity theory with an extra dimension. Quark-gluon plasma which is produced in accelerators is strongly coupled. We use AdS/CFT correspondence to calculate Meson thermalization time by approximating the collisions by a sudden change of baryon number chemical potential. On the gravity side, this is followed with an apparent horizon formation on probe-brane which is the signal of thermalization  

    Exergy Analysis on Design of SMR Preheating Exchangers

    , M.Sc. Thesis Sharif University of Technology Shariati, Mohammad Hassan (Author) ; Farhadi, Fathollah (Supervisor)
    Abstract
    With the global oil price increase in recent years and fossil fuel resource scarcity, analyzing of fossil fuel consumer industries and optimization of their fuel consumption is an important rule. Exergy analysis is an efficient tool for this purpose in the chemical and petrochemical processes in recent years more than ever. Therefore, in this work, an exergy analysis is performed for heat recovery section of Steam-Methane Reforming (SMR) process as a major consumer of natural gas.
    This work contains five general section. At the first section, exergy and energy concepts, reforming processes and other related basic concepts are described. The second section is about the recent research and... 

    Optimal Model of Industrial Waste Heat Application in Desalination System: A Case Study of Hormozgan Province

    , M.Sc. Thesis Sharif University of Technology Yousefi, Paria (Author) ; Avami, Akram (Supervisor)
    Abstract
    Increasing population growth and scarcity of fresh water resources have created the challenge of water supply, especially in the Mena region. Thus, many countries in the region have turned to innovation in the development of high-energy seawater desalination technologies. Utilizing the waste heat of refineries in the desalination industry can reduce costs and preserve the environment. In this article, effective ways to use the waste heat of other flue recovery steam of Bandar Abbas oil refinery are investigated. The integration of the heat recovery system consisting of recuperative heat exchangers and heat pipes with thermal desalination plants is investigated by multi-stage flash and... 

    Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still

    , Article Energy ; Volume 75 , 2014 , pp. 501–507 ; ISSN: 03605442 Jahangiri Mamouri, S ; Gholami Derami, H ; Ghiasi, M ; Shafii, M. B ; Shiee, Z ; Sharif University of Technology
    Abstract
    A desalination system consumes energy for production of freshwater. Since the solar energy is a low-cost, environmentally clean, and available energy throughout the world, it could be the best source of energy for such systems. In this work, a modified desalination system is presented which uses advantages of thermosyphon heat pipes as a fast and high performance thermal conducting device, and at the same time, employs the advantages of evacuated tube collectors (ETCs) which are flexible and have high performance in adverse weather conditions. Results show considerable increase in the production rate of desalinated water and system efficiency with a maximum production rate of 1.02 kg/(m2 h)... 

    Ferrofluidic open loop pulsating heat pipes: Efficient candidates for thermal management of electronics

    , Article Experimental Heat Transfer ; Vol. 27, issue. 3 , Dec , 2014 , p. 296-312 ; ISSN: 08916152 Mohammadi, M ; Taslimifar, M ; Saidi, M. H ; Shafii, M. B ; Afshin, H ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Thermal management of electronic devices is presently a serious concern. This article investigates the thermal performance of a five-turn open-loop pulsating heat pipe in both start-up and steady thermal conditions. The effects of working fluid, namely water and ferrofluid, heat input, charging ratio, ferrofluid concentration, orientation, as well as application of magnetic field, are explored. Experimental results show that using ferrofluid enhances the thermal performance in comparison with the case of distilled water under certain conditions. In addition, applying a magnetic field on the open-loop pulsating heat pipe charged with ferrofluid improves its thermal performance. Charging... 

    Experimental study of internal forced convection of ferrofluid flow in porous media

    , Article Defect and Diffusion Forum ; Vol. 348 , April , 2014 , pp. 139-146 ; ISSN: 10120386 ; ISBN: 9783038350002 Sehat, A ; Sadrhosseini, H ; Shafii, M. B ; Sharif University of Technology
    Abstract
    This work presents an experimental study of the effect of a magnetic field on laminar forced convection of a ferrofluid flowing in a tube filled with permeable material. The walls of the tube are subjected to a uniform heat flux and the permeable bed consists of uniform spheres of 3-mm diameter. The ferrofluid synthesis is based on reacting iron (II) and iron (III) in an aqueous ammonia solution to form magnetite, Fe3O4. The magnetite is mixed with aqueous tetra methyl ammonium hydroxide, (CH3) 4NOH, solution. The dependency of the pressure drop on the volume fraction, and comparison of the pressure drop and the temperature distribution of the tube wall is studied. Also comparison of the... 

    Promising technology for electronic cooling: Nanofluidic micro pulsating heat pipes

    , Article Journal of Electronic Packaging, Transactions of the ASME ; Volume 135, Issue 2 , 2013 ; 10437398 (ISSN) Jahani, K ; Mohammadi, M ; Shafii, M. B ; Shiee, Z ; Sharif University of Technology
    2013
    Abstract
    Currently, the thermal management of microelectromechanical systems (MEMS) has become a challenge. In the present research, a micro pulsating heat pipe (MPHP) with a hydraulic diameter of 508 lm, is experimented. The thermal performance of the MPHP in both the transient and steady conditions, the effects of the working fluid (water, silver nanofluid, and ferrofluid), heating power (4, 8, 12, 16, 20, 24, and 28 W), charging ratio (20, 40, 60, and 80%), inclination angle (0 deg, 25 deg, 45 deg, 75 deg, and 90 deg relative to horizontal axis), and the application of magnetic field, are investigated and thoroughly discussed. The experimental results show that the optimum charging ratio for water... 

    Overall thermal performance of ferrofluidic open loop pulsating heat pipes: An experimental approach

    , Article International Journal of Thermal Sciences ; Volume 65 , 2013 , Pages 234-241 ; 12900729 (ISSN) Taslimifar, M ; Mohammadi, M ; Afshin, H ; Saidi, M. H ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Pulsating heat pipes (PHPs) are simple, cheap, and efficient heat transfer devices. They have applications in electronic cooling. In the present research, an experimental investigation is conducted on startup and steady thermal performances of open loop pulsating heat pipes (OLPHPs). Effects of working fluid, heat input, non-condensable gases (NCGs), ferrofluid concentration, magnets location, and inclination angle on the thermal performance of OLPHPs have been considered. Obtained results show that using ferrofluid can improve the thermal performance in steady state condition. Furthermore, applying a magnetic field enhances the heat transfer characteristics of ferrofluidic OLPHPs in both... 

    Analysis of the various elements of heat sources in silicon carbide polymers (6H-SiC and 3C-SiC) semiconductor laser

    , Article Asian Journal of Chemistry ; Volume 24, Issue 5 , 2012 , Pages 2333-2335 ; 09707077 (ISSN) Marjani, S ; Faez, R ; Marjani, H ; Sharif University of Technology
    2012
    Abstract
    In the present paper, we investigated the various elements of heat sources within a silicon carbide polymers (6H-SiC and 3C-SiC) semiconductor laser. The device employs 3C-SiC quantum well (QW) which is sandwiched between two layers of 6H-SiC as cladding regions that can be interpreted in terms of a type-II heterostructure character and a built-in electric field due to the pyroelectricity of 6H using a numerical simulator. The basic design goal was the study of the various elements of heat sources, including the Joule heat power, the Peltier-Thomson heat power and the recombination heat power  

    Experimental study of the effects of ferrofluid on thermal performance of a pulsating heat pipe

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011 ; Volume 1 , 2011 , Pages 435-440 ; 9780791844632 (ISBN) Maziar, M ; Mohammad, M ; Amir, R. G ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    In this work, a four-turn Pulsating Heat Pipe (PHP) is fabricated and tested experimentally. The novelty of the present PHP is the capability of obtaining various thermal performances at a specific heat input by changing the magnetic field. The effects of working fluid (water and ferrofluid), charging ratio (25%, 40%, and 55%), heat input (25, 35, 45, 55, 65, 75, and 85 W), orientation (vertical and horizontal heat mode), and magnetic field on the thermal performance of PHPs are investigated. The results showed that applying the magnetic field on the water based ferrofluid reduced the thermal resistance of PHP by a factor of 40.5% and 38.3% in comparison with the pure water case for the... 

    An impact of the hole etching depth within a photonic crystal VCSEL on its heat sources

    , Article Australian Journal of Basic and Applied Sciences ; Volume 5, Issue 8 , August , 2011 , Pages 766-770 ; 19918178 (ISSN) Marjani, S ; Faez, R ; Marjani, H ; Sharif University of Technology
    2011
    Abstract
    In the present paper, for the first time, an impact of the hole etching depth within a photonic crystal vertical cavity surface emitting diode laser (PhC VCSEL) on its heat sources is analyzed discussed. The device employs InGaAsP multi-quantum wells sandwiched between GaAs/AlGaAs and GaAs/AlAs distributed Bragg reflectors (DBRs) modeled using a numerical simulator. The basic design goal was the study of the various elements of heat sources upon the hole etching depth, including the total heat power, the Joule heat power, the Peltier-Thomson heat power and the Recombination heat power  

    Application of homotopy and homotopy perturbation methods to differential equations of heat transfer and shear deformation of beams

    , Article Applied Mathematical Sciences ; Volume 5, Issue 21-24 , Apr , 2011 , Pages 1051-1063 ; 1312885X (ISSN) Manshadi, M. D ; Rohi, E ; Marzabadi, F. R ; Vaziry, M. A ; Sharif University of Technology
    2011
    Abstract
    In this paper, different physical differential equations related to heat transfer and shear deformation of beams are solved by new but powerful analytical methods: Liao's Homotopy method (H.M), Homotopy method with Pade approximation and the He's Homotopy-Perturbation Method (HPM). Nonlinear convective-radiative cooling equation, nonlinear heat equation with cubic nonlinearity and the shear deformation of sandwich beams are used as examples to illustrate the solution procedures. Comparison of the applied methods with exact solutions reveals that both methods are greatly effective  

    Performance optimization of solar chimney power plant using electric/corona wind

    , Article Journal of Electrostatics ; Volume 78 , 2015 , Pages 22-30 ; 03043886 (ISSN) Nasirivatan, S ; Kasaeian, A ; Ghalamchi, M ; Ghalamchi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The effect of the corona wind on the natural convection at absorber of a solar chimney power plant pilot was investigated experimentally. The aim of the study is to improve the efficiency of SCPP through enhanced the heat transfer coefficient of absorber with corona wind. The results show that corona wind enhanced the absorber convective heat transfer coefficient leading to increment in air the velocity and the output power of the SCPP. The amount of heat transfer of pilot increased more than 14.5% when applying voltage of 15 KV and the speed in chimney experienced about 72% amelioration  

    Different methods for calculating a view factor in radiative applications: Strip to in-plane parallel semi-cylinder

    , Article Journal of Engineering Thermophysics ; Volume 24, Issue 2 , April , 2015 , Pages 169-180 ; 18102328 (ISSN) Hajji, A. R ; Mirhosseini, M ; Saboonchi, A ; Moosavi, A ; Sharif University of Technology
    Maik Nauka-Interperiodica Publishing  2015
    Abstract
    Determining the shape factor is essential for solving radiative heat transfer problems. An important case that has various applications in the heat power plant systems is calculation of the configuration factor between the fins and the in-plane parallel semi-cylinder. In the present work, Monte Carlo method, Cross string method, and analytical solutions were implemented for this problem. Several simulations were performed by varying semi-cylinders radius and different lengths of the fin. Also, the influence of the number of emitting rays and the number of strips was studied. Considering a fin between two tubes, it is found that calculating the view factor between one tube and a fin is... 

    Numerical investigation of the inlet baffle, header geometry, and triangular fins effects on plate-fin heat exchangers performance

    , Article Heat Transfer Engineering ; Volume 36, Issue 16 , 2015 , Pages 1397-1408 ; 01457632 (ISSN) Salehi, S ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    In this study, the optimal location of baffle in the header of air-to-air plate heat exchangers and the geometry of the header and the effects of triangular fins arrays on the effectiveness were numerically investigated for different flow rates and Reynolds numbers on different models. The main purpose of inlet baffle and geometry changes is to improve the pattern of flow distribution and assist flow uniformity. The investigations show that the optimal location of the inlet baffle with high Reynolds numbers has an insignificant effect on effectiveness, while with Reynolds numbers 250-3000, the effectiveness is affected significantly by baffle location. On the other hand, the reduction in... 

    Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique

    , Article Case Studies in Thermal Engineering ; Volume 6 , September , 2015 , Pages 104-115 ; 2214157X (ISSN) Amini, Y ; Mokhtari, M ; Haghshenasfard, M ; Barzegar Gerdroodbary, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This research investigated the forced convection heat transfer by using the swirling impinging jets. This study focused on nozzles, which equipped with twisted tapes via a numerical approach. The computational domain created by utilizing the fully structured meshes, which had very high quality from the viewpoint of aspect ratio and skewness. The numerical simulations were performed at four different jet-to-plate distances (L/D) of 2, 4, 6 and 8, four Reynolds numbers of 4000, 8000, 12,000 and 16,000, and also four different twist ratios (y/w) of 3, 4, 5 and 6. The mesh-independent tests were conducted based upon the average Nusselt number. The obtained results revealed good agreement with...